MICKEY MOUSE CONQUERS CHINA

WHATEVER HAPPENED TO CULTURAL IMPERIALISM?

If, as the Chinese Communist Party insists, the imperialist West has never given up on its plot to dominate and humiliate China (and uses Tibet as a weapon to weaken China), then why has China Post just issued stamps featuring Mickey Mouse, to celebrate the opening of Disneyworld in Shanghai? http://news.xinhuanet.com/english/photo/2016-06/17/c_135443856.htm?utm

Mickey Mouse stamp 2016Disney worked extremely hard to cravenly apologise to China for having financed the making of Scorsese’s Kundun, telling the Dalai Lama’s life story, in 1997. The New York Times reminds us what happened next:

“By the time of the “Kundun” debacle, the demand [in China] was clearly there. Mr. Eisner just needed to undo the damage.

“Disney hired former Secretary of State Henry Kissinger and mounted an intense lobbying effort. In October 1998, Mr. Eisner met Zhu Rongji, who had just been named prime minister, at China’s leadership compound in Beijing. Mr. Eisner apologized for “Kundun,” calling it a “stupid mistake,” according to a transcript of the meeting.

“This film was a form of insult to our friends, but other than journalists, very few people in the world ever saw it,” Mr. Eisner said during the meeting. (“Kundun” bombed, taking in just $5.7 million against a production budget of about $30 million.)

“Mr. Eisner said the company had learned a lesson. And he introduced Mr. Iger, then Disney’s international president, as the person who would carry on negotiations for a theme park. The Chinese prime minister responded favorably. Land in Shanghai, he said, had already been set aside.

“And just like that, the door to China started to reopen.”

http://www.nytimes.com/2016/06/15/business/international/china-disney.html?ref=asia&utm

 

Nationalist Chinese Netizens Are Already Turning on Disney Shanghai

To them, the just-opened theme park is yet another example of cultural imperialism.

http://foreignpolicy.com/2016/06/16/china-nationalists-disney-shanghai-wang-jianlin-wanda-mickey/?utm

After nearly two decades of negotiations, Disney’s $5.5 billion theme park in the glitzy financial capital of Shanghai finally opened on June 16. The planned grand opening featured concerts in front of the world’s largest Disneyland castle, rollout of merchandise like Disney Princess chopsticks and a Mickey Mouse hat adorned with Swarovski crystal, and princess makeovers for young Chinese girls. Disney hopes to attract 11 million visitors annually, with ticket prices ranging from $56 to $76. But the quintessential American brand has already attracted the ire of China’s top real estate tycoon — and its outspoken nationalist netizens.

Disney has bent over backwards to accommodate Chinese government demands in exchange for access to the Chinese market, including creating new rides and dropping its demands for a Disney Channel in China. Negotiations to open the park were extensive, and took decades. But the CEO of Disney’s chief domestic rival, Dalian Wanda Group, was not impressed.

“One tiger is no match for a pack of wolves — Shanghai has one Disney, while Wanda, across the nation, will open 15 to 20” parks, Wang Jianlin said during a May 24 interview with state broadcaster China Central Television.

Wang’s salvo has played well among China’s nationalist web users. Amid rising Chinese nationalism, some in China have come to see purchasing local brands instead of foreign ones as an act of patriotism. Theme parks may be the next battlefield. “No matter what, with regard to Disney, I absolutely support Wang Jianlin,” wrote a user in a popular comment on microblogging platform Weibo. “I do not plan to go to Disney.”

Some web commenters have said they resent the global dominance of American culture, often exported by the massive U.S. film and entertainment industry. “The era in which American culture commands the globe is slowly changing,” wrote one Weibo user. “Wait and see. Once China becomes strong, it will be Chinese culture that is the world’s mainstream culture.” Anotheraccused Disney of being “boring,” adding, “China also has a lot of good stories. Why has no one made a theme park based on [martial arts novelist] Jin Yong or [martial arts television drama] Chinese Paladin?”

While many in the United States believe that Chinese regulators have unfairly targeted U.S. businesses, many in China view U.S. companies as corporate behemoths exercising outsized influence over China’s economy and society. Disney’s global empire, in this view, is only the latest example. “Apple flaunts its wealth in China, but China’s Huawei and high-speed rail are blocked from the United States,” wrote one Weibo user in a June 14 comment that garnered more than 6,000 likes. Telecom giant Huawei has been blocked by U.S. officials from bidding on government contracts due to national security concerns, and a U.S. company recently canceled a contract with the Chinese to build a high-speed rail line from Los Angeles to Las Vegas. The user concluded, “Why should we give Disney an opportunity? This land belongs to the Chinese!”

This is not the first time Chinese netizens have complained about the new resort. Its sky-high food prices — about $5 for a pork bun, compared to the 50 cents on the street in Shanghai — caused indignation among tourists and web users about one week before the grand opening.

For years, Disney’s entry into the Chinese market was beset by government interference, rooted in part in concerns about cultural imperialism. China banned Disney films in 1997, after Disney released a movie about the Dalai Lama, the exiled Tibetan spiritual leader that Beijing insists is a “splittist.” Negotiations for the eventual opening of a theme park only began after then-CEO Michael Eisner apologized for that film. A decade of bargaining led nowhere, however, until current CEO Robert Iger reportedly made several major concessions. These included giving up hope for a Chinese entrée for the Disney Channel, long a cornerstone of the company’s branding strategy. Chinese officials also wanted the park to have its own unique rides, rather than copies of popular rides Stateside. And Disney was careful to include localized attractions, such as the Wandering Moon Teahouse, which features Chinese regional cuisines. Company spokespeople have sought to present the park as “authentically Disney, distinctly Chinese.”

After making his fortune several times over in China’s booming real estate business, Wang, one of the richest men in Asia, has set his sights on the country’s burgeoning entertainment industry. Wanda is China’s largest real estate conglomerate, and under Wang’s leadership it has also become the world’s largest movie theater operator. Some project China’s box office to become the world’s largest within a few years, and Wang aims to dominate domestic entertainment as well as the swiftly growing $610 dollar tourism industry. On May 28, just under three weeks before Disney’s grand opening, Wanda opened its first theme park, the $3.2 billion Nanchang Wanda City in the southeastern province of Jiangxi. It’s the first of 15 planned projects.

To be sure, many Chinese do not share the same nationalist sentiments as some outspoken web users. According to the Los Angeles Times, tickets for the first few weeks after the park’s opening have been sold out for months. Numerous netizens reminisced about growing up with Mickey Mouse and Donald Duck. Others seemed bullish on the U.S. company. “Disney has been around for almost 100 years,” wrote one Weibo user. “Will Wanda still exist in 100 years?”

 

Posted in Tibet | Leave a comment

TERROR EAST AND WEST

Old Europe, New China and those Tibetan terrorists

In the commodious grounds of the oldest of Dutch think tanks, the Clingendael Institute, the pastoral idyll abounds. Green meadows, clipped formal gardens, sheep grazing safely in their fields; and a  Japanese garden of trees artfully pruned, not for symmetry but a contorted beauty. Inside the old chateau, dark panels and paintings redolent of a lost golden age on the walls.

What better venue to discuss urgent matters of the day, such as China’s new anti-terror law, a portmanteau of illegality that can criminalise anyone, for anything? A gathering of Tibetans, Uighurs, policy specialists, security analysts, Falun Gong practitioners: nothing unusual for Clingendael, used to assessing and planning the oversized Dutch global footprint, for generations. Somehow the gravitas of the ancestors, the ghosts of the East India Company came full circle with the arrival of this gathering of the dispossessed and displaced, expelled by the Chinese empire.

If ever there was an incarnation in stone and wood of the European ideal, of prosperity with peace, of security within the calm of a natural setting, it is Clingendael. This baronial manor has trained thousands of diplomats, not only from the Netherlands but throughout the developing world. Amid a summer flush of Himalayan rhododendrons, Clingendael is all understatement, old money, old power, and utterly contemporary. Hosting the wretched of the earth is nothing new for Clingendael, nor is it new that Clingendael is fully engaged with the urgent influx of refugees to Europe, the dangers of terrorism and the necessarily vigilant security that lets in the refugees and keeps out the murderers.

What passes as sage advice in the West is never make China lose face, or the dragon will roar, and incinerate you. Nowhere has China lost more face, failed so utterly, than in Tibet. The dragon has roared, the anti-terror laws codify the roar, but the Tibetans, like the Monkey King, are irrepressible, and they choose by themselves when to incinerate, to remind each other to stay strong, and fear nothing.

Clingendael is near Delft, where Dutch potters hacked the secret of Chinese porcelain, with its translucent white glaze made of tin, and its bright blue, of Iranian cobalt. Iran is where blue and white porcelain orginates; having made it to China, it was a coup of intellectual property theft, and an early move towards globalisation, to make it available to the masses of Europe, from Delft.

Buddhism and much later Islam similarly travelled from central Asia to China, and ultimately to Europe. At much the same time, the last dynasty of Han Chinese emperors, the Ming, were also perfecting an absolutist state with the tightest control possible over the population, a premodern precursor of today’s anti-terrorist grid management.

It was the next dynasty, the nomadic warriors from Manchuria who named themselves the Chinese emperors of the Qing dynasty, who gained much control over Tibet, creating an empire that to this day has not been successfully assimilated into China. While the Qing were busy conquering Tibet, they were losing control of the porcelain trade to Delft.

China today is still dealing with the consequences. These days the theft of intellectual property tends to be in reverse, as many European companies have found, to their shock, when their hi-tech suddenly becomes available from China.  While China may be adept at hacking European businesses –a skill they trialled 20 years back by hacking Tibetan exiles- they still struggle to cook the obstinately raw Tibetan barbarians, who remain foreign, perversely preferring their cold plateau to the comforts of a Chinese city life. So China has brought back the old Ming dynasty grid management of intensive policing, with neighbourhood surveillance teams on every block, alert to the slightest stirrings of dissent or discontent.

In the Ming period, all the enforcement of political correctness was in human hands, driven by block captains who knew every person they monitored, an up-close technique for quelling dissent as soon as it arises, even in a private mutter. These days such traditional methods (Americans call this humint, short for human intelligence gathering) is greatly supplemented by sigint, electronic surveillance signals intelligence. Today’s grid management, legitimated by China’s new anti-terror laws, combines restrictions on movement by Tibetans, intensive humint and sigint to clamp down immediately on any signs of unhappiness. In official eyes, this new humint/sigint grid management system works so well in Tibet, it has become the model for a China-wide rollout.

Since we all live, to some extent, in a security state that has given itself extraordinary powers to detain and interrogate people who have committed no crime other than thinking bad thoughts about the state, there may even be a danger that in the West, we too may be tempted to adopt this latest of Chinese exports: the grid management system. If we were to make the great mistake of stigmatising all Muslims as a threat, we too could be drawn to grid management in Molenbeek or the Islamic banlieux of Paris. And China would have a new export, of all that sigint surveillance equipment that, in Lhasa, has replaced the snipers visible on Tibetan rooftops. Let’s hope we don’t make that mistake.

The global trade in porcelain, in techniques of monitoring hearts and minds, in quelling the masses, in turning empires into nation-states, are global issues, in a time of mass refugee movements and terrorists in our midst. But in all the debates, Tibet is usually missing, regarded as a side issue, an also-ran, almost superfluous to the main story. Yet if we look more closely, the Tibetans are at the heart of today’s perplexity of how to deal effectively with China.

On the podium was a global assortment of the displaced. A Chinese lawyer exiled to New York for frankly naming China’s existential anxiety at the prospect of state collapse because, in the holy fasting month of Ramadan, Uighurs close their restaurants by day. If you didn’t know that this is illegal, now you do. What is legal or illegal in China is entirely in the hands of the party-state: the law says exactly whatever they say it means. Having myself been deported from China for the crime of “pretending to be an official of the World Bank”, I would like to propose a competition to nominate the most bizarre definition of an actual conviction, in China, for a criminal offence.

Sharom Hom, of Human Rights in China had much to tell about this latest over-reach of the security state, its insistence that unhappy Uighurs or Tibetans are to be defined as criminal and subject to the full harshness, in the name of rule by law, of indefinite detention, disappearance, extorted confessions, 24/7 surveillance (both sigint and humint, as the Americans say, both electronic hacking and a human monitor on the block where you live, who knows you personally and knows all your moves).

Veteran Tibetan diplomat Kelsang Gyaltsen said Kissinger’s “wisdom” has long been that the West must never make China feel it has lost face. That hoary foolishness has been the consensus for so many decades, we are now reaping the result: a rapacious China that demands and demands, knowing if it sounds demanding enough it always gets its way. Now we all pay the price of endlessly accommodating China. Today’s authoritarianism is the result. The walls of Clingendael, witness to so much of the exercise of power, have heard this many times.

The question posed by our Tibetan hosts of this forum: whether  anti-terror laws protect or punish, is an old question, not so easy to answer when there are everywhere people in need of protection and a tiny number of violent terrorists who must be punished.

The irrepresssible Uighur leader Dolgun Isa, himself labelled a terrorist by China, thus unable to visit even usually accommodating India, made it clear punishment is now extended, within China and wherever China has reach, to entire populations, nationalities and peoples, a sweeping criminalisation that ultimately becomes self-fulfilling. This, he was too polite to say, now confronts every government inclined to categorise Muslims as threats. If the many to be protected are to be secure in the long term, the very few to be excluded must be few indeed, not whole peoples. The West too teeters on the verge of making China’s sweeping and self-defeating mistake.

The Tibetans have long been at the centre, even if we, on the peripheries of the one continent of Eurasia, have seldom noticed. The modern grid management of Xi Jinping’s reinvigorated absolutist party-state was trialled in the laboratory of Tibet, and in the penetration of computers of the exiled Tibetans.

China’s new anti-terror laws allow the party-state to designate anyone a terrorist, for any reason, that need not be made public, ever, on national security grounds. What is the origin of this relentless insistence on treating human unhappiness as criminal, even a threat to the very existence of China?

The security state is a world unto itself, following its own logic. It rules out, from the start, any effort to understand why citizens feel alienated from the state that demands their affections. Tibetans can tell us this is foolish, and counter-productive. It only heightens the distance between Han and Tibetans, Han and Uighur. To relentlessly punish not only behaviour but even thought, because it is deemed a priori to be “anti China”, is to deepen an already deep divide.

Tibetans understand China all too well. In a globalised world where we all need to understand China, there is much they can teach us. The Tibetans know China, without feeling drawn to become Chinese, something China  cannot understand.  But they do not hate China, either, they just want to be different.  The Tibetans have long experience of the imperial hauteur of the court in Beijing, and they have learned when to take it seriously, and when to ignore it. We could learn better not to have our buttons pressed so often by a deeply insecure, pushy, even arrogant China that believes we conspire against China’s rise,  while  they also crave our approval.

We could learn from Tibetans who have endured decades of accusations, criminalisation and grid management, how to deal with the paranoid style of the party-state. After so much repression, the torture and coerced confessions, the Tibetan public suicide protests redefined as the terrorist acts of the deranged, the Tibetans have lost their fear. Now China has lost its hold over them, and it is simply too late for the security state grid management to do more than delay the inevitable.

Tibetans can tell us that the anti-terror laws and the entire security state apparatus imposed on them originates in China’s paranoia about the dissolution of the USSR, lest China fail similarly. The party-state made its decisive turn around 15 years ago, after deciding that designating “autonomous regions” for “minority nationalities” was a grave mistake, borrowed from the Soviet model, that only led to heightened minority nationality nationalism, and distinctively separate identities. One can argue forever if that is what sundered the Soviet Union, but even if it did, China’s turn towards downplaying its own official territorialisation of nationalities, turning instead to the fiction of a single Chinese nationality embracing all 55 minorities, has simply come too late. Fifty years of “autonomy” have done their work, and did make Tibetans feel much more Tibetan, once they saw the extreme violence China can and did deploy. China created the nationalism of the Tibetans, and that cannot now be undone by assimilationism and anti-terror laws. As Kelsang Gyaltsen told us, “the spirit of resistance among Tibetans is stronger than ever.”

China now wants to wash those red-faced, uncouth Tibetans to an even yellow, but it ain’t gonna happen.

This is what Tibetans teach all of us: if you always accommodate China, you get more demands to accommodate more. If you quietly remain true to your own values, can endure the bluster, threats and racist arrogance, you do finally create your own space, which can never be taken away.

We are so used to seeing Tibetans as victims, we have failed to notice their strengths. One of many strengths is the insistence you find everywhere in Tibet on speaking pure Tibetan, not mixing it in with Chinese. Each to their own sphere. To make a mixture is to become ramalug, neither sheep nor goat. On the manicured grounds of old European Clingendael, the sheep and the goats are indeed kept separately, even if the ducks are everywhere. We do need those Tibetans, to tell us how to deal with China.

 

Posted in Tibet | Leave a comment

“L’exploitation minière intensive profite aux Chinois, pas aux Tibétains”

Published in the Belgian media La Libre:

“L’exploitation minière intensive du Toit du monde profite aux Chinois, pas aux Tibétains”

VERHEST SABINE Publié le lundi 30 mai 2016

http://www.lalibre.be/actu/planete/l-exploitation-miniere-intensive-du-toit-du-monde-profite-aux-chinois-pas-aux-tibetains-527dbd3a3570ea593db72c55

Du cuivre, de l’or, de l’argent et bien d’autres minerais : si l’exploitation minière se révélait plutôt artisanale jusqu’ici sur le haut plateau tibétain, il en ira tout autrement à l’avenir puisque le plan quinquennal chinois, actuellement en vigueur, y prévoit des investissements massifs dans le secteur. “La Chine a identifié deux secteurs piliers de l’économie permettant de transformer le Tibet, source de coûts, en une source de revenus : le tourisme de masse et l’exploitation minière.” Non sans “conséquences sociales et environnementales dévastatrices”, soulève le chercheur australien Gabriel Lafitte, auteur de l’ouvrage “Spoiling Tibet. China and Resource Nationalism on the Roof of the World” (Zedbooks Asia Arguments). Entretien.

Quelles en sont les richesses principales et le coût de l’extraction en fait-il une activité rentable

La Chine sait de longue date que le Tibet est riche en minerais, mais ce n’est que récemment que les géologues chinois ont pu établir exactement l’ampleur des gisements et l’exploitation qu’on pouvait en faire. Il y a 80 millions de tonnes de cuivre et 2000 tonnes d’or à extraire du plateau tibétain, ce qui représente 750 milliards de dollars aux prix actuels du marché. L’exploitation pourra prendre vingt ou trente ans, mais ce sera une industrie très rentable. Le moment est décisif pour le Tibet.

 

L’exploitation des ressources se fait pourtant déjà. Les Tibétains ont d’ailleurs eux-mêmes une tradition en la matière…

En effet, mais leur exploitation se fait de manière prudente et à une échelle très modeste. Ces trente dernières années, l’exploitation était surtout le fait de mineurs chinois, des paysans pauvres venant de la province du Sichuan, qui opéraient de manière artisanale. On peut assimiler ce phénomène à une ruée vers l’or, complètement hors de contrôle, techniquement illégale, mais très répandue. Les méthodes d’extraction se sont révélées ravageuses pour l’environnement et, en particulier, les rivières. Car ils utilisent des explosifs, du mercure, des tractopelles pour littéralement “mâcher” le terrain, au détriment des pâturages. Et les Tibétains ne peuvent rien dire : dès qu’ils manifestent, quelles que soient leurs raisons, c’est immédiatement vu comme une menace contre la souveraineté nationale et l’intégrité territoriale de la Chine. Si nous sommes actuellement à un tournant – depuis trois, quatre ans -, c’est parce qu’on est désormais passé à une industrie d’une ampleur complètement différente.

Quelles sources d’énergie peut-on trouver au Tibet ?

Du pétrole et du gaz. Le pétrole a été extrait et exporté vers le centre de la Chine ces 25 dernières années. Plus récemment, les Chinois ont découvert du gaz, qu’ils acheminent par pipelines.

De l’uranium ?

Il y a des gisements d’uranium, que la Chine a exploités par le passé de manière très malpropre, laissant beaucoup de déchets radioactifs. Mais si l’on s’intéresse à l’énergie, on doit aussi mentionner le potentiel hydroélectrique. La Chine planifie la construction d’un nombre extraordinaire de barrages et de centrales. Ce qui est d’ailleurs directement lié à l’exploitation minière : pour extraire une tonne de cuivre, vous devez excaver cent tonnes de roche, les réduire en poudre, les cuire et les traiter chimiquement; ce processus est particulièrement énergivore.
La population tibétaine profite-t-elle des retombées de l’exploitation minière ?

C’est l’aspect triste de la situation : les Tibétains ne prennent part ni à la ruée vers l’or à petite échelle de ces trente dernières années, ni à une exploitation industrielle telle qu’on la voit se développer depuis peu. Le langage de l’exploitation est chinois, les compagnies sont chinoises, la main-d’œuvre qualifiée est chinoise. Les Tibétains ne jouent aucun rôle, ils ne touchent pas de royalties ni de compensations pour la perte de leurs terres. Ils n’ont pas de formation, pas d’emploi. Mais ils doivent supporter les coûts environnementaux de l’exploitation, qui est réellement dangereuse, notamment parce que les gisements se trouvent très près des rivières. À partir du moment où vous devez pelleter cent tonnes de roche pour obtenir une tonne de cuivre, cela signifie que nonante-neuf tonnes, qui plus est traitées chimiquement, resteront sur place pour toujours. Qui va en porter la responsabilité ? Il existe, sur papier, de bonnes lois environnementales mais elles ne sont pas mises en œuvre comme elles le devraient. Les mines sont gérées par des intérêts puissants et interconnectés. Certaines, de plus petite taille, le sont par les autorités locales. Dès lors, si vous rencontrez un problème, où allez-vous vous plaindre ?

 

Le titre de votre livre, “Spoiling Tibet”, évoque la détérioration du toit du monde. Qu’est-ce qui, outre l’exploitation minière intensive, vous inquiète ?

Le Tibet n’est pas encore détérioré jusqu’à avoir atteint un point de non-retour. Mais la politique chinoise sur plusieurs décennies a complètement modifié la logique de la terre. Il était possible pour des êtres humains de vivre au Tibet parce que ces êtres humains ont compris qu’il était essentiel d’être mobiles. C’est ce que la Chine, qui n’avait historiquement aucune expérience dans l’administration des prairies des hauts plateaux, n’a jamais compris. Elle entretient le préjugé selon lequel les nomades sont juste en train de vagabonder, d’errer avec des animaux, de vivre comme des animaux. Mais c’est elle qui amène les nomades à devoir vivre comme des animaux, entourés de clôtures, sans liberté de circuler, obligés d’aller où on leur enjoint d’aller. Ceux qui ont été réinstallés, sédentarisés, se sont appauvris et se retrouvent maintenant complètement dépendants de l’État. C’est pathétique. Il ne s’agit pas pour moi d’entretenir le cliché d’un Shangri-La, d’avoir une vision romantique sur les nomades, de les considérer comme les dernières personnes libres sur terre. Le fait est que, traditionnellement, les nomades étaient considérés comme de vrais Tibétains, ils étaient les mieux nantis. Maintenant, ce sont les plus pauvres, considérés comme ignorants, arriérés, analphabètes – même par les Tibétains. C’est un changement complet de perception.
Les communistes chinois prétendent que c’est précisément pour leur permettre l’accès à la santé, à l’éducation qu’ils les amènent à se fixer aux abords des villes…

Tout Etat moderne se doit d’offrir ces services importants à ses populations. Mais il n’y a, pour cela, aucune raison de les centraliser et d’obliger tout le monde à vivre en ville. On peut donner accès à l’éducation en utilisant les technologies et moyens de télécommunications modernes, comme cela se fait en Australie. Or, au Tibet, on ferme de nombreuses écoles primaires des zones reculées pour centraliser l’enseignement dans de grands établissements urbains. En un certain sens, la Chine revient sur une politique passée qui était plus progressiste.

 

Posted in Tibet | Leave a comment

DROPPING TIBET, FIGHTING  GRAVITY

DIVERTING TIBETAN WATERS INTO THE CANAL TO THE DEEP NORTH

#1 in a series of 8 blog posts on Tibetan rivers

 

China can and does import every natural resource it needs, with one exception. China can afford to source its raw materials globally because it then exports the products manufactured from them. China now so dominates global commodity markets that a surge of Chinese speculators chased out of the stock exchanges and into commodity futures price gambling can, as at the moment, send iron ore prices soaring for reasons no-one else can understand.

Only one natural resource, or raw material, or commodity stands out: water. It is not as though China, especially urban, industrial China has enough water; on the contrary there is such an acute water shortage in lowland north China that some even call it a threat to regime survival.

Even though all industrial and agricultural production uses water lavishly, resulting in the current shortage, water cannot be imported. Not only is it too heavy to keep ships afloat in the oceans of salt water, China simply needs far too much of it for shipping it in to work. The quantities are unimaginable: tens of billions of cubic metres of pure water urgently needed to keep northern China in the industries to which it is accustomed.

The one source of water that is available to China is Tibet. Cadres in charge of Qinghai province (Amdo in Tibetan) decades ago coined the slogan: Qinghai is China’s Number One Water Tower, and this is now the catchy slogan in command in Beijing too, usually inflated to: Tibet is China’s (or Asia’s) Number One Water Tower.

 

rain & snow reaching Tibet from west

 

 

 

 

 

 

 

Everyone now knows that Tibet is full of water, and what’s better, it is upriver, waiting to slide down to the wheat fields of northern China, ready to grow more dumplings.

Much water does come from Tibet, flowing west, south, east and southeast, watering most of Asia. Tibet’s flowing waters incise into the Tibetan Plateau, eroding the rising plateau. That is why the Yellow River is yellow, why China’s loess plateau is hundreds of metres deeply filled with silt, and why yellow is the colour special to the emperor, starting thousands of years ago with the mythical Yellow Emperor. The iconic colour China takes as definitive, is Tibetan.

Yet in reality, on any precipitation map of China, the Tibetan Plateau is one of the more arid regions, receiving only the tail end of the monsoon rains the Plateau generates. It is lowland China, especially in the south, that receives far more of the monsoon bounty of plum rains.

rain & snow reaching Tibet from transHimalaya Indian monsoon

But eastern Tibet, both in Kham and much of Amdo, does receive good rain, and the high peaks capture every drop of passing moisture, holding it in glaciers which release steadily year-round.  So the official water tower slogan, both boon and bane for the future of Tibet, has a basis.

For sixty years China’s leaders, scientists and hydraulic engineers have looked for ways of getting more water to northern China, by draining water from the mighty upper Yangtze (Chang Jiang in Chinese, Dri Chu in Tibetan) and sending it north to the Yellow River (Huang He in Chinese, Ma Chu in Tibetan) or direct to thirsty cities of the north, including Beijing.  Many maps have been issued, over many years.[1]

 

rain & snow reaching Tibet from East Asian monsoon

The solution so far has been canals, dug at great expense, and at great human cost to the many displaced by them. This is part of a long tradition of imperial hydraulic engineering, that has long legitimated the rule of emperors who succeeded in controlling the rivers; and upending their rule when they failed. The two huge canals that began operation recently do much to alleviate the shortages in the north, but not enough.

Officially these two canals were the first two of a three-stage grand scheme announced at the start of this century, the third being a canal across eastern Tibet to take water from tributaries of the upper Yangtze and send it to the upper Yellow River, all within the Tibetan Plateau. The package of three canals were collectively called the South-to-North Water Diversion project, abbreviated here to S2N. The three canals were the Eastern Route, the Central Route and the Western Route. All along, the plan was that first the eastern and central canals would be built; then the team of engineers would start on the western route, through Kandze and Ngawa Tibetan Autonomous Prefectures, in Sichuan. The two lowland canals were completed by the time the 12th Five-Year Plan ended in 2015, a triumph of supply-side solutions to problems of unchecked demand.

rain & snow reaching Tibet from Bayof Bengal Indian monsoon

 

CHINA’S LATEST FIVE-YEAR PLAN TO CAPTURE THE WATERS OF TIBET

Would the 13th Five-Year Plan announce the start of the S2N western route through Tibet? That is a question this blog has focussed on before, and the answer is now clear. In March 2016 came the official announcement of “Big reservoirs in Tibet and other areas” on a long list of “Major Projects to be Implemented in coming five years.”[2]

This is new, the first time reservoirs and Tibet have been put into a single policy sentence. There are plenty of dams in Tibet, and plenty more planned, but almost none are reservoirs. These dams are officially “run-of-the-river” dams, designed to impound only as much water as required to build up pressure for its release back to the river via hydropower electricity generating turbines. Although many in downstream India are worried these dams on transboundary rivers will impact on water flow downriver, China is adamant that until now the sole purpose of all dams built in Tibet is to make electricity.[3]

Reservoirs are a quite different category, deliberately designed from the ground up to hold as much water as possible. This can be for two primary purposes. Both require holding water for many months, until it is most needed. Both thus impose a heavy load on the surrounding landscape, which, in Tibet, is full of fault lines straining against each other until the suddenly slip, in an earthquake. There is now much evidence that the sheer weight of impounded water in big reservoirs can induce earthquakes, both because of the weight pressing from above, and because water seeping through cracks directly lubricates the fault line.

Longyangxia Ma Chu dam from above pic

One major purpose for building big reservoirs is to divert water away from the river, to some distant destination, by canal and/or tunnel. The other major purpose, in Tibet, is to store water in the rainy summer months until it is needed in the drier winter further downstream, to reliably turn hydropower turbines and reliably generate electricity.

Both purposes necessitate greatly interfering with the natural environmental flow of rivers, disrupting the life cycles of all animals of the watershed. Both  require holding water back in huge volumes until distant users need it. Both exist for exporting a commodity to distant users, whether it is commoditised water sent via other rivers; or the hydropower generated downstream on the same river below the big reservoir, which is ultimately consumed by cities 1000 or even 2000 kms away.

The construction of reservoirs to boost hydropower generation will be considered more closely in a later blog in this series, here we look more closely at reservoirs for water diversion.

 

where the water tower gets its water from

WHO BENEFITS?

Will these new reservoirs serve the Tibetan people, providing water for fast growing cities, or for farmers and their crops? Are Tibetans the intended beneficiaries?

Irrigation is an ancient practice in Tibetan cropping villages. Even in far western Tibet, now too dry to support crop growing, archaeologists find ancient stone lined irrigation channels that once kept village fields well-watered.[4]

There is scope today for improving irrigation in the food bowl of central Tibet between Lhasa and Shigatse, and several projects, such as the European Union financed Panam project of the 1990s, have done so.[5] However what is needed is not “big reservoirs”, but many much smaller dams, on tributaries of the big rivers, for local water supply, especially in spring, as plants begin to grow well before the summer monsoon rains arrive. Big reservoirs are not required to improve the productivity of Tibetan farming. Climate change is bringing more rain in spring, but still not early enough, on a high plateau with a very short growing season.

Likewise, the booming cities of Tibet generally have ample water supply from the rivers they are built on, with no requirement for “big reservoirs.”[6] Villages in Tibet often lack access to drinkable water, and benefit greatly from the laying of plastic piping uphill to reliable sources, which may also require construction, in the hills, of a small dam, but not a “big reservoir.”[7]

 

DEFYING GRAVITY

The new “big reservoirs in Tibet and other areas” (that are not usually considered by China to be Tibet, yet very much on the Tibetan Plateau) are quite different, starting with the actual design of the dams. These are big dams, not only because they must hold much more water than electricity generating dams, but they are much taller, for a very specific reason. One is so high it will be the second tallest dam in the world.

Despite decades of engineering research and planning, one major problem has always gotten in the way of realising the dream of capturing Tibetan waters and diverting them to northern China. The inescapable reality is that, at those points on upper Yangtze tributaries closest to the Yellow River, the Yellow riverbed is at the least 80 metres higher. At other temptingly close distances, it is as much as 450 metres higher.

Water can be pumped up hill, but it takes enormous amounts of energy to do so, a cost both to construct and operate, which greatly alters the economics of the entire project, as the ultimate users of the diverted water will certainly have to pay for it. Unlike the railway from Chengdu to Lhasa, now under construction,[8] which makes no business case, there must be water users downstream with both the capacity and motivation to repay the costs of construction, as water is a saleable commodity once it has been impounded.

 

WHO WILL BUY TIBETAN WATER?

What has delayed this Tibetan water diversion project for so long, and may yet see it again shelved, is not engineering problems, but cost. Even when upper Yangtze tributaries are separated from the upper Yellow by a mountain range, there is no longer great technical difficulty in boring a tunnel right through the mountains; in fact almost all of the three “canals” of the three Tibetan routes of S2N water diversion will be tunnels. China has shown recently that tunnelling through a Tibetan mountain range, despite the seismic risk, can be done, when it tunnelled the Chokle Namgyal Range (Qilian in Chinese) that separates northern Amdo from Gansu, for the new high speed rail line from Lanzhou via Xining, under the Qilian and into Gansu, then on to Xinjiang. Tunnelling may be costly, but technically China can do it, even, in the 13th Five-Year Plan, proposing a long undersea tunnel to connect China to Taiwan.

The problem is cost, exacerbated by water’s unwillingness to defy gravity, and  the impossibility of finding tunnel routes that aren’t uphill. The simplest solution is to build the dam walls so high that gravity can be utilised, and pumping costs minimised, or in at least one of the three routes, no longer needed at all.

waterstreessed map of China Greenpeace 2016

 

 

 

 

 

 

The three Tibet water diversion routes can be built as three separate projects, over a long period if need be, but the official website of the project insists they must be done in a certain order. First, and at a high altitude, is the Yalong River Water Diversion Line, requiring a tunnel 131 kms long.

The project promoters state: “Bayankala Mountain lies between Huanghe River and Changjiang River. The elevation of the bed of the Huanghe [Yellow] River is higher than that of the correspondent section of Changjiang [Yangtze] by 80-450 m. It is necessary for the water transfer project that a high dam will be constructed for damming water or some pumping stations be set up for lifting water, and some long tunnels will be driven through Bayankala Mountain. Two methods of water diversion, flowing by gravity and by pumping were considered. But for each of them, a high dam in height of 200 m or so will have to be constructed and some long tunnels over 100 km in length to be driven.”

This remains the primary obstacle, greatly increasing cost. It is the reason China is now emphasizing “big reservoirs.”

Northern China’s chronic water shortage is well known, so one might suppose that diversion upstream of Tibetan headwaters will firstly benefit urban consumers now reliant on ever-deeper wells chasing an ever-sinking water table. However, the flow to be diverted to the yellow River, even if it all works according to plan, is insufficient to reach the long last section of the Yellow River, where the water shortage is most acute.

The diverted water will at best flow to the mid-section of the Yellow River, to provinces such as Gansu, Ningxia, Shanxi, Shaanxi, Inner Mongolia and to industrialised districts of Qinghai. These are provinces with less political weight than the richer downriver provinces where water is most acutely deficient, but they are the source of most of China’s coal, thus supplying most of China’s energy, whether through burning coal for power generation close to the coal deposits, or sending the coal by rail to coastal China for burning there.

 

[1] Water Resources and Hydropower Development in China, Scientific & Technical Information Institute, Ministry of Water Resources and Electric Power, Beijing, 1986, 36

[2] China’s major projects to be implemented in coming five years, Xinhua’s China Economic Information Service, 7 March 2016

[3] http://www.cprindia.org/articles/india-china-brahmaputra-suggestions-approach   http://www.thehindu.com/opinion/columns/downstream-concerns-on-the-brahmaputra/article7834154.ece

[4] Mark Aldenderfer,  The Prehistory of the Tibetan Plateau to the Seventh Century A.D.: Perspectives and Research From China and the West Since 1950, Journal of World Prehistory, Vol. 18, No. 1, March 2004

[5] PIRDP – Final Report 2005, EU-China Programme for the Panam Integrated Rural Development Project (PIRDP), April 2006

Water and Primary Health Care for Tibetan Villagers, AusAID, 2002

[6] Basic Data of China’s 288 Cities at and above Prefecture Level in 2011, in The State of China’s Cities 2014/2015, China Science Center of International Eurasian Academy of Sciences,  http://unhabitat.org/books/state-of-china-cities/

[7] http://neec.no/tingri-county-wave-reservoir-reinforcement-project/   http://neec.no/qinghai-huang-nangui-germany-county-2016-small-water-conservancy-key-county-project/

[8]   http://www.economist.com/news/china/21699167-plans-new-railway-line-tibet-pose-huge-technological-challengeand-political

 

Posted in Tibet | 2 Comments

DEFYING GRAVITY

south to north western route 2015 map

 

SACRIFICING TIBETAN RIVERS FOR CHINESE COAL

#2 in a series of 8 blog posts on China’s latest plans for Tibetan rivers

 

BIG COAL’S BIG THIRST

All stages of coal production require water. At the coal face, if workers are to avoid black lung disease, dust is suppressed with water. Coal stored above ground is susceptible to catching fire, and is washed with coal, for dust and fire suppression. When coal is burned to generate electricity massive cooling towers must be installed, emitting constant clouds of steam, as water is the cheapest coolant. When coal is converted to coke, for steel making, water is needed. When coal is gasified to make a new fuel to be piped to cities, water is needed. When coal is converted into a wide range of chemicals -a major goal of the 13th Five-Year Plan- much water is used and of course dirtied.

So the diverted waters of Tibet will not be used to grow  lowland China’s crops or provide potable drinking water for urban folk; its main use will be in the coal industry. That is the argument made by advocates of the south-to-north S2N Western Route, based on who can pay sufficient prices to justify the project. It seems especially sad that the rivers of Tibet are to be captured and diverted only to perpetuate China’s addiction to coal.

That is the argument of one of China’s leading water engineering analysts, Prof. Jia Shoufeng, Deputy Director of the Center for Water Resources Research under the Chinese Academy of Sciences (CAS), Chair of the Department of Water & Land Resources Research at the CAS Institute of Geographical Sciences and Natural Resources Research, and Vice Chair of the Special Committee for Water Resources under the Hydraulic Engineering Society of China. Prof Jia argues that if S2N Western Route is implemented, at least in part, there will be enough water for China’s many coal mines, coal-fired power stations and coal chemical factories to obtain the water they badly need. He calls these coal-based industries based in Shanxi, Shaanxi, Inner Mongolia, Ningxia, Gansu and Qinghai China’s primary energy supply base, now and well into the future.

shovelling coal Linfen Shanxi 07

 

Citing Ministry of Water Resources estimates, he says the energy supply base needs no more than three billion cubic metres  (3bn m3 ) of extra water, to enable them to not only keep functioning but to expand and fulfil a 13th Five-Year Plan goal of large scale conversion of coal to gas to be piped to users.[1]

China’s use of coal has become globally controversial because of the resulting climate warming emissions. There is much confusion around actual coal use, with China and environmentalists worldwide reporting hopefully not only a peak in coal consumption but even a decline in coal use. [2] However, China officially does plan to increase its coal use, well beyond the current level of 3.8 billion tons a year, already more than half the global total, and China has approved the construction of many more coal-fired power stations. All China agreed to at the Paris global climate treaty negotiations in 2015 was that coal use would peak in 2030 and then start to decline. The actual 13th Five-Year Plan specific target for coal consumption in 2020 is 4.3 bn tonnes.[3]

 

西安-2月2日。2007年2月2日,一名工人在西安焦化厂的炼焦炉上工作。 据西安的环保部门的消息,西安西郊工业集中区大气污染专项整治已经启动,期间将完成对西安焦化厂的关闭工作。西安焦化厂关闭后,将年削减3亿立方米废气,减排烟尘、粉尘1500吨。

西安-2月2日。2007年2月2日,一名工人在西安焦化厂的炼焦炉上工作。
据西安的环保部门的消息,西安西郊工业集中区大气污染专项整治已经启动,期间将完成对西安焦化厂的关闭工作。西安焦化厂关闭后,将年削减3亿立方米废气,减排烟尘、粉尘1500吨。

Since coal is mostly found in the arid north, and electricity demand is mostly far to the south and east, the energy base contains many industrial complexes with dozens of uses for coal. All need water. Prof Jia disagrees with the international NGOs working in China, which have generated much higher estimates of how much water the coal industrial complex needs.[4] He reanalyses the concerns expressed by Choke Point China, a project of the Woodrow Wilson Center and the NGO Circle of Blue; also the estimates of Greenpeace,  and Hong Kong based China Water Risk. According to Prof Jia they all greatly exaggerate how much water the coal industries need.

His own estimate, of 3bn m3 dovetails well with the planned pumping of water, in the third of the three S2N Western Route plans, the diversion of the Dadu River. He advocates that some or all of S2N Western Route goes ahead, because the coal industry can and will pay a sufficiently high price for Tibetan water: “Building the Western Route of the South-North Water Transfer Project can be considered. The key to the success of inter-basin water transfer projects is whether there are water users that could afford the relatively higher cost of ‘transferred water’. The reason why some water diversion projects haven’t commenced as planned is mainly because high project costs result in high water prices and there are currently not enough users who can afford to pay the price. For the Western Route, the energy industry will be the main user and these users can afford to pay the higher water prices. It is clear that energy companies can afford the relatively higher price of ‘transferred water’.

“Moreover, the Western Route actually comprises several smaller-scale water transfer projects which can be implemented through several phases. The water sources of the Western Route include three rivers with total annual runoff of 22.1 billion m3: the Dadu River at an altitude of 2,900m, and the Yalong River & Tongtian River at 3,500-3,600m. According to the preliminary plan, the annual average transferable water from these three rivers is 12-17 billion m3: 3-5 billion m3 from Dadu, 3.5-4 billion m3 from Yalong and 5.5-8 billion m3 from Tongtian.

“The first phase of the project can be implemented in the three tributaries of the Dadu River, namely Ake River, Ma’er River and Duke River as these lie closer to the Yellow River; about 3-5 billion m3 can be transferred. If the development of the energy bases is really suffering from water shortage, water transfer from the Dadu River of around 4 billion m3 to the Yellow River can be implemented first. Once implemented, it will not only meet water demand from energy bases, but also supply water for industrial and municipal use.”[5]

coking factory Xián 2007 coal miner 2006 Shanxi

 

 

Prof Jia favours the Dadu River diversion being built first, even though, of the three S2N Western Route big reservoirs, it is the one that defies the laws of gravity, and requires the pumping of billions of cubic metres of water uphill, by 458 m up, to be precise. That enormous burden of pumping will, in turn, necessitate more hydro dam building in Tibet as well, to generate sufficient electricity. For Prof Jia this is not a problem. His focus is on finding a way to get the S2N Western Route built, and he is cheerfully confident he has found the clincher, in the coal industries: “Perhaps together, the development of energy bases along the middle and upper reaches of the Yellow River and the construction of the Western Route, can achieve a win-win!”

Jia Shoufeng and other advocates of capturing Tibet’s rivers make light of the water demands of the coal industries, but other sources suggest China’s ongoing reliance on coal will need not only one but all three of the S2N Western Route big reservoirs and tunnels. China Water Risk evaluates the energy industry’s demand for water: “Power generation is heavily reliant on water for cooling purposes as well as driving steam turbines. The power sector is the 2nd largest user of water in China after agriculture, making it the No.1 industrial user of water. Coal generates over 16 per cent of China’s GDP, making it the biggest of China’s industries.[6]Wangjialing coal mine Shanxi

Not everyone is so optimistic. A 2015 report by China Water Risk, of 200 pages, Towards A Water & Energy Secure China: Tough Choices Ahead In Power Expansion With Limited Water Resources, suggests access to water remains a severe constraint on China’s many coal-based industries.[7]

 “Electricity consumption in China has almost quadrupled over the past decade from 1,347TWh in 2000 to 4,976TWh in 2012. Industry drives the nation’s hunger for power, with 85% share of electricity consumption.  China is still hungry for thirsty power and could add 2TW by 2050. This is more than the current total installed capacity of the US, UK, France, Germany, Russia and Japan combined. Concerns over China’s power expansion are not whether the build out can be achieved but whether China has enough water resources to fuel this expansion. The power sector’s water risk exposure is great.”

China’s coal industry, manufacturers using coal coal-fired electricity to turn raw commodities into marketable metals or chemicals, and the transport network that hauls coal from mines to industrial consumers are all subsidised, encouraging further coal use.[8] Contrary to popular rhetoric of a green China, perverse incentives persist, that add to fuel consumption, greenhouse gas emissions and the need to capture Tibetan rivers.

In 2015 Lord Nicholas Stern issued a plea for China to start to at least scale back approvals for new coal-fired power stations, and in the 13th Five-Year Plan to not promote conversion of coal to gas, as other sources of cleaner gas are readily and cheaply available. Professor Stern’s plea got nowhere and coal gasification is now a priority of the 13FYP. Stern proposed: “strictly limiting approvals for, and investments in, new coal plants— unless these are strictly necessary to replace older and less efficient capacity — will be needed to curtail these economically inefficient expansions. Such action is strongly warranted for economic and financial reasons, let alone environmental, public health and climate reasons. In the case of coal bases and coal-to-gas plants, a strategic decision, reflected in the 13th Five-Year Plan, not to prioritise and support such developments, along with specific regulatory controls, would be consistent with achieving the kind of structural change, better growth and early peaking of emissions at the core of China’s new development model.”[9]

Greenpeace reported that provincial authorities in China, in 2015 have issued permits for 210 new coal-fired power stations to be built, and of these: “49% of the power plants are in areas with extremely high water stress, 5% in high water stress areas and 6% in arid areas. The power plants in these very water stressed areas would consume at least 310-370 million cubic meters of water every year, equivalent to the needs of roughly 5-6 million urban dwellers, exacerbating the conflict between urban, agricultural and industrial water use.”[10]

If China persists in relying so heavily on coal, the alternative strategy would be to strictly regulate the use of water by the coal industry, and the Ministry of Water Resources (MWR), in 2013, attempted to do so.[11] The political reality is that MWR has no real power over a coal industry that often defies Beijing altogether, with innumerable illegal (and highly dangerous) coal mines. MWR in practice has been largely ignored. Rather than managing water demand, the solution is, as usual, to increase supply, this time from Tibet.

 

A CLOSER LOOK AT THE ACTUAL WATER DIVERSION PLAN

The first route officially due to be constructed is a dam 175 metres high intercepting the Dza Chu (Yalong) river at Throshul Gongma (~32°10’N, 98° E). The tunnel is mapped as a straight line heading northeast, under the Bayan Har range (巴颜喀拉山脉, Bāyánkālā shānmài, in Tibetan: Mardza Gang), then continuing underground, to debouch in Amdo Golok (Qinghai Guoluo in Chinese) near the villages of Barshi, Palyul, Darhang and Menkarhang, (~32°50’ N, 99°45’ E) on a minor tributary which flows north into the Yellow River. The outlet will be in Pema Dzong (Banma Xian [county] in Chinese) or in Darlag Dzong (Dari Xian in Chinese), both remote pastoral districts with, until now, very few immigrant Chinese and by census count 93% and 96% Tibetan respectively, populated almost solely by Tibetans. The added dam wall height of 175 m just overcomes the 80m height increase of the end point over the start point, but will greatly limit how much water can be released from the big reservoir, if gravity is the sole flow driver. The tunnelling for the entire 131 kms, will have to be remarkably accurate.

dam sites Dadu

This is well upriver, before the Ma Chu (Yellow) skirts the flanks of the sacred Amnye Machen range and then slows greatly, fanning out across the Dzoge wetland and water meadow lands now recovering from modernist projects to separate water and land into mutually exclusive categories by draining the  “swamp” with ditches. How these peatlands and wetlands will cope with many billions of cubic metres of extra flow is not clear.

The extra flow will be a maximum of five bn cubic metres, only one quarter of what the entire project of three reservoirs and three tunnels are meant to deliver. Thus the second stage, even further up the Yalong river, is to boost the Yalong with a further 10 bn cubic metres of water to be withdrawn from the main channel of the Dri Chu (Yangtze), not long after the Dri Chu exits Qinghai below Yushu and enters the northwesternmost end of Sichuan.

This project cannot be built until the first project, that actually delivers water flow into the Yellow River, is operational. If the second project existed by itself, all it would achieve would be to send water from one tributary of the Yangtze to another, eventually returning to the same outflow. But the second stage is supposed to deliver as much as half of all the water of the three projects combined, a total of 10 bn m3 , even though most rain falls in the summer monsoon season, and north China’s water shortage is worst in winter –another reason for big reservoirs retaining vast amounts of impounded water (and sediment).

 

 

Yalong planned cascade 2014

The second project is even more ambitious than the first, with a tunnel length of 158 kms, and a dam wall height of 302 m, a very high dam, second highest in the world. The Dza Chu/Yalong is actually closer, approximately 70 kms, but the length of the tunnel is much greater. Of the many problems China’s planners have had to grapple with is the basic reality that even in the uppermost reaches, the Yangtze is a bigger river than the Yellow, and has, over millions of years,  therefore cut deeper, incising itself into the Tibetan Plateau, so  even when the rivers run parallel, the Yangtze is lower. Extremely long tunnels are the engineering answer. In order to find an entry point into the Yalong that is  below the intake on the Tongtian/Yangtze/Dri Chu, 90 extra kms of tunnelling will be needed just to achieve a gravity drop and avoid pumping.

The second reservoir, with its 302 m high dam wall,  is in a deep valley just below the confluence of the Dri Chu/Yangtze and the Chumarleb river (32°40’, 96°E). The area receives only 400mm of rain (or snow) a year, the catchment further upstream less still.[12] It is not far below the new national park proposed for Drito county (Zhiduo in Chinese), the proclaimed source of the Yangtze, its Tibetan name signifying that Tibetans have long known it at the source of the Dri Chu/Yangtze. Does a national park, ostensibly dedicated to honouring the source of the Yangtze, and to carbon capture by excluding nomadic pastoralists to grow more grass, fit well, immediately downstream, with a massive dam to capture the waters of the Yangtze and send them to northern China? Protection and extraction in one landscape?

The third of the three big reservoirs in the package listed officially under the South-to-North Western Route Water Diversion scheme is quite different, in location, and in its disregard for the law of gravity. On the Dadu River (Chinese) another “big reservoir” is planned. The official description states: “The Hydraulic Project will be constructed on Xierga Reach of Zumuzu River, a tributary of the upper reach of Daduhe, the height of the dam is 296 m. The water by pumping will be diverted from Xierga Hydraulic Project to Jiaqu River, a tributary of Huanghe, total length of the diversion route is 3O km, including a 28.5 km tunnel. The lifting height of the pumping station is 458 m, the mean annual power consumption is 7.1 billion kwh.”

The plan is for four hydropower stations, known in Chinese as Xiaerga, Bala, Dawei and Busigou, on this tributary of the Dadu River, with the big reservoir at Xiaerga above them. All the power they generate by capturing the energy of this mountain river will be needed to pump water uphill, through almost 30kms of tunnel.

The great attraction of this project is that at this point the Yangtze and Yellow Rivers are remarkably close, though separated by the Bayan Har (Mardza Gang in Tibetan) mountain range. Yet along the planned tunnel alignment Chinese geophysicists have found five fractures, five faults and one abnormal zone in the eastern portion of the tunnel, and a further two fractures, three faults and four abnormal zones in the western section of the tunnel.[13] The dam wall height, of 296m, will make it the third highest dam worldwide. But the distance is only 30 kms, from a tributary of the Dadu to a tributary of the Yellow River.

“Bala power station, with a maximum height of 138 m, is a high-dam hydropower station that is to be constructed on the Zumuzu River, source of the Daduhe River. The backwater length of Bala Reservoir under normal water level is 26 km. At the upstream end of Bala Reservoir, a controlled cascade, Xiaerga Dam, is in the planning stages. The maximum height is 242 m. The main discharge structure is a spillway. The dissipater of the spillway is designed as a ski-jump type model.”[14]

Another recent definition of what is to be built lists more dams: “The South-to-North Water Transfer Project is an extremely important infrastructure project to ease water shortage and meet the development requirements of northwestern and northern China. An earlier study on the project began in the 1950s. The Western Route Project (WRP) can control the water distribution to northwestern and northern China and meet the water demand of six provinces and their neighboring regions in the next 50 years. Furthermore, the WRP will improve the management of the Yellow River and promote the development of the cities in the Yellow River basin. The WRP may bring enormous social, environmental, and economic benefits. The WRP will be completed in two stages and in the first stage 8 x109 m3 [8 bn cubic metres] water will be transferred from the upper reaches of the Dadu and Yalong Rivers, in which Dadu River contributes to 2.35 x109 m3 [2.35 bn cubic metres] , accounting for 5% of the annual runoff of the river. According to the layout of the WRP, four dams will be built in the four tributaries of Dadu River: Keke dam in Ake River, Huona dam in Make River, Zhuanda dam in Duke River, and Luoruo dam in Sequ River. The annual diverted water amount in the four tributaries are 0.35 billion m3 , 0.75 billion m3 , 1 billion m3 , and 0.25 billion m3 , respectively.”[15]

What China’s planners and engineers call the Ake River is to Tibetans the Nga-chu, a tributary of the Mar-chu. The Nga-chu in turn creates the name of the county and its town, Ngawa, in Chinese Aba, which under China has become the name of the entire prefecture, traditionally part of Amdo, now the northernmost portion of Sichuan. The Chinese names for the dams are sometimes taken directly from the Tibetan, such as Bala, a monastery of the Jonangpa school of Buddhism.[16] From China’s perspective the area is at the junction of three provinces: Sichuan, Qinghai and Gansu, remote from the distant lowland capital cities of each. For urban elites based in Beijing, Chengdu, Xining or Lanzhou, these are mountain waste lands that have never produced anything entered into national accounts.

ENVIRONMENTAL CONSEQUENCES: CAN A RIVER DROWN?

It is not possible to tip as much as 20 billion cubic metres of water into a tributary of the Yellow River, far upstream, without consequences. This is especially so because rainfall is concentrated in a few summer months, and even with the planned “big reservoirs” holding back water as long as possible, outflow will still not be spread evenly.

For the Yellow River, an extra 20bn m3 effectively doubles the size of the river, at the point of entry. This in turn has major consequences further downstream. The Ma Chu/Yellow River/Huang He, a little further down, is pushed towards the southeast by the sacred Amnye Machen range, all the way along the southern flank, to its end. Eventually the river then loops back to flow along the north side of the Amnye Machen range before heading further north. But once it is no longer hemmed in by the south side of the Amnye Machen mountains, the Yellow River does something remarkable: it fans out into a vast water meadow, a cold but fertile pasture of rich tussock grasses and water, fed not only by the main stream of the Yellow River but by other tributaries coming in from the east.

This is the great Dzoge wetland, one of the biggest and highest wetlands in the world, partly protected by the Ramsar global wetland protection treaty, and listing on the World Database of Protected Areas, and now recovering from China’s campaign to drain it.

The developmentalist state, from the north German plain in the 19th century to modern China, abhors this mixing of land and water. While Tibetan pastoralists and their yaks knew how to walk from tussock to tussock without bogging, modernisers feel compelled to separate earth and water, each in their separate domain, as a prerequisite for intensifying production. China dug innumerable channels and ditches to drain Dzoge, exposing to the air organic matter accumulated over thousands of years as the sedges and grasses flourished, died and were compressed into peatland. Once exposed, the peat is susceptible to fire, to slow, smoky, ineradicable burning.

In recent years, China has recognised that draining the Dzoge wetland was a mistake, and has started filling in the ditches, in the hope of repurposing the area as a major ecotourism attraction.

If 20bn m3 of water comes down the Yellow River, this will transition the drying wetland in the opposite direction, inundating it.

The Ramsar convention lists what is at stake: “Sichuan Ruoergai Wetland National Nature Reserve. 02/02/08; Sichuan; 166,570 ha; 33°43’N 102°44’E. Nature Reserve. Said to be the largest alpine peat marsh in the world as well as tundra wetland located in the upstream area of the Yellow River and the northeast of Qinghai Tibet Plateau at 3,422m-3,704m altitude. A marsh meadow vegetation provides habitat for 137 bird species including IUCN Red-List species Chai (Cuon alpinus),Yudaihaidiao (Haliaeetus leucoryphus), and Heijinghe or Black-necked Crane (Grus nigricollis), as well as 38 animal species, 3 amphibian species,15 fish species, 3 amphibian species and 362 wild plant species. The site is also referred to as the water tower of China, as it serves the important water supply area of upper Yangtze River and Yellow River. The site stores peat of 7 billion m3 and has water-holding capability of nearly 10 billion m3. It contributes to local climate regulation, water and soil conservation, and aids in reducing green house effects. A high touristic place with a unique ecosystem, panoramic plateau landscape, and colorful Tibetan culture with great aesthetic value. Desertification and decrease in marsh area have occurred due to global warming and rainfall reduction.”

[1] http://www.china5e.com/index.php?m=content&c=index&a=show&catid=13&id=941066

[2] Coal Cap Policy Can Help China Achieve an Earlier Peak in Carbon Emissions

http://www.nrdc.cn/coalcap/index.php/English/project_content/id/570

[3] http://www.china5e.com/index.php?m=content&c=index&a=show&catid=13&id=941390

[4] http://www.greenpeace.org/international/en/publications/Campaign-reports/Climate-Reports/The-Great-Water-Grab/

[5] Jia Shaofeng , Will Energy Bases Drain the Yellow River? China Water Risk, February 10, 2015, http://chinawaterrisk.org/opinions/will-energy-bases-drain-the-yellow-river/#sthash.SVg2VDcS.1tpReJo6.dpuf

[6]申宝宏 Shen Baohong, Scientific mining capacity and sustainable development for coal sector, 4 Nov 2015

[7] http://chinawaterrisk.org/notices/towards-a-water-energy-secure-china/

[8] Doug Koplow et al., Untold Billions: Fossil-Fuel Subsidies, Their Impacts And The Path To Reform: Mapping The Characteristics Of Producer Subsidies: The Global Subsidies Initiative, IISD, 2010, 31-36

[9] Fergus Green and Nicholas Stern,  China’s “new normal”: structural change, better growth, and peak emissions, Grantham research Institute on Climate Change and Environment, Policy brief July 2015,

[10] Lauri Myllyvirta, Xinyi Shen, Harri Lammi; Is China doubling down on its coal power bubble? Over 150 new coal-fired power plant projects being permitted in China. Greenpeace http://www.greenpeace.org/eastasia/publications/reports/climate-energy/2016/coal-power-bubble-update/

[11] http://chinawaterrisk.org/notices/mwr-announces-for-coal-plan/

[12] Annual precipitation of China, map 30 in Geographic Atlas of China, (Zhongguo di li tu ji) Beijing 2009

[13] DI Qing-Yun WANG Guang-Jie GONG Fei et al.,   Geophysical Exploration Of A Long Deep Tunnel On The West Route Of South-To-North Water Diversion Project, Chinese Journal Of Geophysics’地球物理学报 Vol.49, No.6, 2006, Pp: 1676∼1683

[14] J. Feng, R. Li, R. Liang, and X. Shen, Eco-environmentally friendly operational regulation: an effective strategy to diminish the TDG supersaturation of reservoirs, Hydrology and Earth System Sciences, vol 18, 1213–1223, 2014

[15] Shimin Tian , Zhaoyin Wang,  Bimodal Sediment Distribution And Its Relation With The River Ecology In The Dadu River Basin, Proceedings of 16th IAHR-APD Congress and 3rd Symposium of IAHR-ISHS, Springer, 2009, vol 2, 1049-1054

[16] Gyurme Dorje, Tibet Handbook, 787

Posted in Tibet | Leave a comment

DEFYING ECONOMICS

WATER DIVERSION ON  A MASSIVE SCALE, FROM TIBET TO LOWER CHINA

 

#3 in a series of 8 blog posts on China’s latest plans for Tibetan rivers

 

China has long planned to channel billions of cubic metres of water from the Tibetan upper Yangtze (Dri Chu in Tibetan) in order to pump water into the depleted Yellow River.

The three specific routes officially planned are now poised to begin construction, if the recent announcement of “big reservoirs in Tibet”, on the list of 13th Five-Year Plan targets is implemented.

Tibetan river waters have become, to China, even more desirable than its forests, grasslands, livestock or minerals, most of which fail to “come out” to China’s satisfaction, or are in decline, due to official bans.

 

Za Chu Mekong Jinghong dam

What will be the impact on Tibet if these three south-to-north (S2N) water diversion projects, with their big reservoirs, tunnels and canals, are built, across the most troubled regions of the Tibetan Plateau?

If all three S2N western river diversion projects are built, and work as well as planned, sending 20 bn m3 more water  into the Yellow River, this will be a major boost to an exhausted Ma Chu/Huang He/Yellow River, which, at Lanzhou, not far beyond the Tibetan Plateau, has a mean annual runoff of around 35 bn m3. On paper, the extra water from Tibet, taken from the upper Yangtze, could boost the yellow River by 50 per cent or more. However, even this boost would do nothing for the lower Yellow River, as all the benefits will have been captured by midriver users.

 

WILL THESE BIG RESERVOIRS BE BUILT?

There are cogent reasons to suppose that since the 13th Five-Year Plan for 2016 to 2020 has announced big reservoirs will be built “in Tibet and other areas” which China no longer thinks of as Tibetan, that the go-ahead signals their inevitability. Some observers suppose that an official announcement is in itself proof that the project will proceed as planned. However, China is not monolithic, and it is not the case that central leaders have only to snap their fingers and their command is implemented.

The official announcement, part of a long wishlist of official projects, has been long on the drawing board, and may yet fail to eventuate, for reasons of technical difficulty, expense, insufficient return, or lack of customers willing to  pay for the construction cost recovery. So it is worth looking more closely at the reasons, for and against, to reach some estimation of whether it will happen.

China’s first plan to intercept the upper Yangtze was in 1932, in a report that six decades later led to the construction of the Three Gorges Dam.[1] The Three Gorges Dam, intended to provide not only a massive boost to hydropower generation but also add hundreds of kms of navigability, remains the most decisive human intervention on the Yangtze, also the most contested. Since its completion, the grand vision of the Yangtze becoming a shipping highway extending China’s coast thousands of kms inland, has not been realised. That is the focus of another 13th Five-Year Plan project.[2] That it took eight decades of planning and construction is an indication of the size and complexity of major hydraulic engineering schemes. Here are seven reasons why S2N Western Route may already be past its’ sell-by date.

Lijiaxia Ma Chu dam pic from above

CONTRA

There are many reasons to suppose S2N Western Route will not be built, or not for a long time. Three Gorges required a powerful patron at the very highest level to push it through, and in its wake, enthusiasm for huge projects has waned.

1 CLIMATE CHANGE:                      The stripping of the forests of eastern Tibet has increased the inflow of water to the many Tibetan tributaries of the upper Yangtze, and the climate change trend also increases rainfall, while climate warming is melting the glaciers at the source of many Yangtze sources in Tibet. While this increases overall flow, it also concentrates that flow more in the summer months, exacerbates the danger of flooding (one of the key arguments for building Three Gorges) and also increases sedimentation which may greatly reduce dam water retention capacity, as sediment load carried along by fast flowing mountain rivers is slowed and stopped by big reservoirs. These combined impacts suggest that even though the Yangtze is a massive river, far bigger than the Yellow River, it will be very difficult to capture sufficient water to make much difference on the Yellow River at the times of year when water is most needed.

However, when one takes a more long-term view, as climate scientists do, towards the end of this century, the trend is for rainfall in the upper Yangtze (UYRB) to gradually decline, especially in summer. Scientists warn that climate change could “reduce runoff in the UYRB and exacerbate water supply problems in the region.”[3] Runoff in summer months could reduce by as much as 15 per cent, and in autumn by 10 per cent.

Great Western Water Diversion

2 COST/BENEFIT:                              Unlike statist nation-building projects in Tibet such as railways and highways, paid for by central party-state funds with no expectation of recouping costs, water users throughout China do pay and are expected to pay sufficiently to recover the costs of S2N Western Route construction, even if repayment is over a longish period. The cost of water has historically been kept low, both to encourage its (wasteful) use in agriculture and as a low cost industrial input. Even if farmers are incentivised to use water more carefully, by increasing its cost, there is no way peasant farmers will be able to bear the costs of S2N Western Route, and this is acknowledged by advocates of the project.

 

3 COMPETING USES:                      Water diversion competes with hydropower generation. China is committed to increasing renewable energy as a proportion of total energy consumption, to make its annual burning of more coal than the rest of the world combined more acceptable internationally. Hydropower is the oldest renewable energy technology, but in the mountains of eastern Tibet, the steep valleys are to be used for both eater diversion and electricity generation, but not in the same spot. Meeting China’s renewable energy target  requires investment not only in hitech wind and solar power, attracting great interest from investors, but much less fashionable hydropower. Dams can be designed to provide both hydropower and for diversion of water elsewhere, but in most situations it is one or the other. For example, on the Tibetan Plateau so far, water impoundment for diversion to farmers or distant users has not been done, and all dams have been to hold water only as long as is needed to turn turbines and generate electricity, a design usually known as run-of-the-river.

Even on long rivers in the mountains, with steep valleys well suited to dams, there is still only a limited number of sites suitable for dam construction. On Tibetan rivers, endless cascades of dams have long been planned, with many built and many more due for construction; all of them until now being for hydropower. On the Yarlung Tsangpo a series of six dams below Tsethang in southern Tibet is planned with one, the Zangmu dam, in operation. This area is on the same stretch of river once proposed, by retired PLA officers, as the best location for a massive water diversion scheme, far bigger than S2N Western Route, that would eventually reach the Yellow River. The fact that a string of six hydro dams is under way in this district means there can be no water diversion. Doing both is not possible.

Hydropower from the planned dams in eastern Tibet does have customers, far away in coastal China, in major cities such as Guangzhou and Shanghai, willing to pay for the electricity generated on Tibetan rivers and transmitted by ultra-high voltage cables (with little wastage) right across China from west to east. By comparison, the main beneficiaries of S2N Western Route water diversion will be in poorer and more remote areas, with less political clout. Fully 33 percent of China’s population lives in the Yangtze catchment.

State Council official map of western route water trnsfer

 

At the Three Gorges Dam, and all the way to the coast, is another competing use: a Yangtze with enough water for sizeable ships to ply up and down. This was always one of the promised benefits of the map of west to east ultra high voltage routes Wilson CEFThree Gorges Dam, which created a lake hundreds of kms long, stretching all the way to the boom city of Chongqing. While the main Three Gorges Dam was completed a decade ago, it was only at the end of 2015 that the final stage, of completing the lock enabling biggish ships into and out of the Three Gorges lake finally came into operation. Now Chongqing industries expect access to global markets for their manufactures, down the Yangtze. The central party-state has responded by announcing the Yangtze River Economic Belt project, a major investment in bringing prosperity to the middle and upper Yangtze, but not to Tibet.

4 ENVIRONMENTAL CONCERNS:                               The amount of water to be withdrawn from the Yangtze by S2N Western Route, even the full 20 bn m3, as planned, will make little difference in the midst of the summer rainy season, but at other times of the year it could be more problematic.

As popular Chinese worries about environmental damage grow, with fears about the purity and safety of food, air and water, there is widespread concern about water diversion in an upstream area officially represented as pure and even pristine.

Large dams –whether for hydropower or water diversion-  disrupt environmental flows, interrupt the paths of breeding fish and other fauna, and in Tibet may trigger earthquakes and massive debris flows, as eastern Tibet is a highly active seismic activity zone, and dams are often on fault lines, unable to bear the extra load of impounded water, which seeps down a long way, lubricating faults straining against each other.

Officially, the planners of the central party-state make light of such dangers, as they do of the concerns of local populations who, by Chinese standards, are small. But the concept of environmental flow, of a river maintaining its natural seasonal rhythm, is growing, and there have been several popular mobilisation campaigns to protest at dam builds, some successful.

Chinese scientists have identified rare fish species in these upper Yangtze rivers, whose lifecycles will not only be blocked by the many dams planned, but also, below the hydro dams required to generate the electricity to pump water uphill, the water that spills out after turning the turbines, has  a higher level of atmospheric gases in it than the fish can take.[4]

As evidence accumulates, at a time when urban Chinese strongly want conservation of pristine landscapes, if only as authentic tourism destinations, the concerns of scientists can become popular concerns.

 

5 AN INVESTMENT CAPITAL SHORTAGE:                               China has bankrolled any number of massively expensive infrastructure construction projects in Tibet, so it might seem strange to suggest the flow of subsidies and capital expenditure on grand projects could ever end, or even slow. China has been committed to “leap-over” development in Tibet Autonomous Region for nearly two decades, and seems ever willing to pump in more money. The result is that, on paper, GDP is growing fast, even if ordinary rural Tibetans remain poor, and benefit little from the capex spend. This all looks good on paper, China can boast that the TAR economy continues to grow rapidly and all is well. In the first quarter of 2016, many provinces grew only minimally, while Liaoning, reliant on yesterday’s heavy industries, actually fell. Only two provinces reported ongoing fast growth: Chongqing and TAR. Both reported 10.7 per cent growth.[5]

What drives the Chongqing economy to grow so fast is not hard to explain. But TAR? As Andrew Fischer has explored in great depth, the TAR rate of growth is almost entirely artificial, driven by central subsidies with very little rate of return if judged purely economically. The payoff is not monetary, but in extending the reach of the state, the establishment of sovereignty over all of Tibet. These are the expenses of nation-building, and are set to persist whether they make economic sense or not.

Yet China could find itself constrained, in ways that are barely imaginable at present, by the consequences of the huge accumulation of debt, and investment in projects that fail to generate a return. One to three years from now, some predict, the crunch will come, and China will have to settle for a period of no growth, until the mess caused by excessive credit, excessive stimulus and excessive investment in unproductive assets all get painfully sorted.

“Many are now concerned that China’s debt could lead to a so-called balance-sheet recession — a term coined by Richard Koo of Nomura to describe Japan’s stagnation in the 1990s and 2000s. When corporate debt reaches very high levels, he observed, conventional monetary policy loses its effectiveness because companies focus on paying down debt and refuse to borrow even at rock-bottom interest rates.

“A financial crisis is by no means preordained but in our view, if losses don’t manifest on financial institution balance sheets, they will do so via slowing growth and deflation, à la Japan, a path China arguably already is on,” Charlene Chu, senior partner at Autonomous Research Asia, wrote recently.

“Every major country with a rapid increase in debt has experienced either a financial crisis or a prolonged slowdown in GDP growth,” Ha Jiming, Goldman Sachs chief investment strategist, wrote in a report this year.”[6]

In such constrained circumstances, there may be greater financial discipline and less occasion to splash money on grand projects that may have a political payoff, but no economic justification. However, China’s determination to remake Tibet, with Chinese characteristics, suggests politics will always trump economics, at least in Tibet Autonomous Region.

6 REDUCED COAL INDUSTRY DEMAND FOR WATER                                          Coal remains highly contentious in China, primarily because it is irremediably dirty, polluting the air of most Chinese cities, and also because the coal industry has an appalling safety record. It may yet be that, despite delegating decision-making to subnational governments, China gets serious about reducing coal use, if only to avoid chronic problems of over-capacity in many industries that rely heavily on coal, notably steel. The Ministry of Water Resources may finally succeed in regulating coal industry water use.

 

7 SCIENTISTS AND ENVIRONMENTALISTS MOBILISE TO OPPOSE BIG RESERVOIRS

Prof Wang quoted above, and the scientists who found rare fish in the specific area to be dammed[7] are among the familiar Chinese pattern of scientists at the forefront of familiarising Chinese audiences with remote locations in Tibet, and what is special about them if untouched. Sometimes these scientific reports and the scientists themselves, who increasingly feel protective of the areas they have studied, gather momentum, and a movement gathers energy to politely but persistently argue against official plans for big dams and reservoirs. Such campaigns, if done skilfully, and with good inside channel connections to high-level decision makes, are sometimes successful, even in the current highly authoritarian situation.

Another example of scientists complicating the narrative of the hydro engineers is the study of the earthquake history of planned dam locations, highlighting the risks that dam advocates brush aside. One example is the Suwalong Dam in Kham, on the Jinsha, one of China’s names for the upper Yangtze, where, between the Tibetan towns of Batang and Markham, it cuts a deep valley. The valley walls are actually so steep, and the valley so deep that it receives little rain and has little vegetation to bind the soil, so there have been massive landslides that in turn have dammed the upper Yangtze, only to have these huge natural dams later burst disastrously.  Careful scientific work recently has shown that 1900 years ago and again 1355 years ago enormous landslides blocked the Jinsha, then, 200 years later, a major earthquake liquefied the water-laden earth holding back the Jinsha, leading to a catastrophic collapse of the lake. [8] Such scientific rediscovery of earthquake histories might make planners pause.

LAST REPORT China's rivers in Chinese

When it became clear, in 2013, that under Xi Jinjping accelerated construction of big dams on Tibetan rivers was to resume, a coalition of environmental NGOs formed, to collectively issue a detailed argument for sparing the Tibetan rivers from intensive extraction of both water and hydropower. The 19 NGOs, with long experience of campaigning to save Tibetan rivers, issued a detailed 88 page report in Chinese and in 2014, a 17 page summary in English. [9] These NGOs have much experience in calmly speaking up for nature, even in repressive times, as they know from experience what can be said, and how to say it, within the bounds of acceptable discourse. This small constituency of advocates for nature, and for the indigenous communities who have long protected nature, are in many ways the only Chinese who have become familiar with remote Tibetan landscapes, other than the Chinese surveyors and engineers who went to Tibet to plan its exploitation.

 

LAST REPORT China's rivers in English

In keeping with past successful campaigns to save rivers from dams, such as the Nu River campaign of 2004, the environmental NGOs, and their well-connected and respected scientists, arranged to meet with senior decision makers to put their case. “In Novem­ber 2013, we were invited to two internal consulta­tion meetings on Yangtze River Basin’s planning and management, held by the National Development and Reform Commission’s Energy Research Institute.” Diplomatically, they state: “These meetings provided us with valuable insights into the new Administration’s efforts to balance basin development and conservation. We left the meetings with new ideas and more optimism on better water governance in China. The health of China’s people and economy is tightly linked to the health of the country’s rivers. We hope this report will help stimulate new efforts and dia­logues on balancing river development and conserva­tion, new institutions enforcing public participation, new emphasis on implementing “ecological redlines.” We also hope to ensure that the pursuit of renewable energy and pressures to reduce greenhouse gas emissions does not sacrifice the multiple values of rivers.”

Nonetheless, as the 13th Five-Year Plan is rolled out, it seems the dams and reservoirs are to go ahead. The environment movement did succeed, largely through the 2004 campaign over the Nu river, to obtain (in hindsight) a decade-long moratorium on dam building. But, if the 13th Plan is implemented, massive infrastructure spending on dams and reservoirs is back on the agenda.

China’s environmentalists, in the longer term, have time in their side, as more Chinese, often well educated, get to see remote areas for themselves, and speak up for nature, for Tibet, and implicitly for the Tibetans who may not form their own NGOs. When these skilful and experienced NGOs remind everyone that “the health of China’s people and economy is tightly linked to the health of the country’s rivers,” this quiet expression of obvious truth reminds a much wider audience what matters in the longer term.

More than a decade ago Chinese environment scientists, NGOs and Tibetan communities created a mass mobilisation campaign that successfully stopped official plans to hydro dam the Gyalmo Ngulchu/Nu/Salween river. That story is told in a later blog in this series. Can such a coalition of ethnic minorities and Beijing intellectuals happen again, in today’s more repressive circumstances?

 

REASONS WHY THE RESERVOIRS, DAMS AND TUNNELS WILL BE BUILT AS PLANNED

While China is no longer totalitarian, and official plans are often delayed, or even fail to materialise, there are many vested interests pushing for the capture of Tibetan rivers, none more so than the official Yellow River Conservancy Commission. Many arguments are made for pressing ahead with all the planned dams and reservoirs, not only to benefit mid-Yellow River industries, notably coal, but even to deal with the dangerous build-up of silt in the bed of the Yellow River further downstream, on the North China Plain, cradle f China’s civilisation.

1 SAVING THE YELLOW RIVER FROM FLOODING THE NORTH CHINA FLOODPLAIN

S2N Western Route has been on the wishlists of central planners for decades.

A 2015 book by a leading hydrologist, Zhao-Yin Wang, puts the debate over the future of the lower Yellow River into wider context of dealing with the opposite danger  to the absence of water: the danger of floods, which has long been the reason why this river, with its huge burden of yellowish sediment from incising its way across the Tibetan Plateau, has for so long been known as “China’s Sorrow.” Prof Wang shows that the flooding danger is now less than before, but the sediment load, now captured in the reservoirs where water stops moving and drops its load, is still problematic. He looks at the prospect of flushing the lower Yellow River with seawater to scour out the accumulated sediments. The idea has been considered for the past 20 years, and would involve pumping seawater uphill, though nowhere near as high as in the Nga Chu/Dadu S2N Western Route proposal. Prof. Wang looks at deliberately engineering a “hyperconcentrated flood” to flush out sediments that in places make the river bed higher than the surrounding land.

Finally he looks at “Interbasin Water Transfer Projects”, which means the S2N Western Route. He is optimistic that it will not only provide more water but also sufficient water, even in the lower Yellow River, to flush out to sea the dangerous accumulation of sediment. He writes: “The water shortage in the Yellow River basin was estimated to be around 7 billion m3 in 2010 and 15 billion m3 in 2030 (Chen, 1991). The main strategies to solve or ease the water shortage and save the river from dying out are reallocation of water resources and interbasin water transfer projects. Three routes of South–to–North Water Transfer Projects have been proposed and will be implemented. The West Route will transfer water from the Qinghai-Tibet plateau to the upper reaches of the Yellow River. The west route of water transfer project will transfer water from the Jinsha River (the Yangtze River), Yalong River, and the Dadu River to the upper Yellow River. About 1.95 billion m3 water can flow to the Yellow River by building dams and tunnels. The water shortage problem of the Yellow River basin can be solved and the clear water may carry sediment into the sea, thence the siltation of the river channel can be stopped. Nevertheless, the ambitious project needs a lot of investment. The Jinsha, Yalong and Dadu Rivers are only 100–200 km from the upper Yellow River. The total annual runoff of three rivers is 120 billion m3. The project can divert 19.5 billion m3 water from the three rivers to the Yellow River.”

Prof Wang acknowledges that the plan is to intercept high mountain tributaries of the Dadu/Nga Chu, which in turn is a tributary of the Yangtze, in order that the water diversion tunnels start as close as possible to tributaries of the Yellow River. On the tributaries due to be captured and diverted, as much as half their stream flow will be lost, and this “will impact the local ecology. It is necessary to study the impacts of water diversion on the local ecology and take measures to mitigate the impacts as the water diversion is implemented.”[10]

 

  1. THE TIBET DIVIDEND There is a widespread perception in China, cultivated by official media, that Tibet has been generously supported by richer provinces, which have poured money and manpower into lifting the backward Tibetans up, but without much payoff. In this view, not only does Tibet remain backward and unproductive, little comes out of Tibet, and it is time China’s huge investment in Tibet paid a dividend.

Although China long expected the profit-making “pillar industries” of Tibetan economic take-off would be minerals, mass tourism, meat and timber, most have failed to materialise, or are already exhausted. It turns out that the most precious commodity Tibet has in super abundance (in this lowland view from below) is water, that just goes to waste unless it is dammed, captured, channelled and tunnelled for use in northern China, or to turn hydropower turbines (or both).

Now that then army of water canal construction engineers have completed the south-to-north canals and tunnels across eastern and central China, it is time to turn to the S2N Western Route. That was the plan all along.  It has taken three successive Five-Year Plans to build those lowland canals, now is the turn of the Tibetan prefectures of Kandze and Ngawa, in eastern Tibet.

So valuable is the water of the upper Yangtze and upper Yellow Rivers, that all else can be sacrificed to ensure watershed protection. Even if that means shutting down the pastoral production landscapes, cancelling nomadic herder land tenure entitlements, displacing hundreds of thousands of nomads, it is worth it if the result is that more grass grows, thus protecting what really matters most to northern China, the degrading watersheds far above.

 

[1] Yang Guishan et al., Yangtze Conservation and Development Report 2007, Science Press, Beijing, 7

[2] Political Bureau of CPC Central Committee passes two documents, Xinhua | 2016-03-26

[3]  Jialan Sun, Xiaohui Lei, Yu Tian, Weihong Liao, Yuhui Wang; Hydrological impacts of climate change in the upper reaches of the Yangtze River Basin, Quaternary International 304 (2013) 62-74

[4] J. Feng, R. Li, R. Liang, and X. Shen,  Eco-environmentally friendly operational regulation: an effective strategy to diminish the TDG supersaturation of reservoirs, Hydrology and earth System Sciences, 18, 1213–1223, 2014

[5] Lucy Hornby China province falls into negative growth: Liaoning is first regional economy to shrink in seven years, Financial Times 28 April 2016

China’s Provinces Take Aim at Moving GDP Target, Wall Street Journal, Jan 29, 2016

http://blogs.wsj.com/chinarealtime/2016/01/29/chinas-provinces-take-aim-at-moving-gdp-targets/?mod=djemChinaRTR_h

[6] Gabriel Wildau and Don Weinland, China debt load reaches record high as risk to economy mounts: US-style credit crunch or Japan-style grinding malaise seen as increasingly likely, Financial Times, APRIL 24, 2016

[7] J. Feng, R. Li, R. Liang, and X. Shen,  Eco-environmentally friendly operational regulation: an effective strategy to diminish the TDG supersaturation of reservoirs, Hydrology and earth System Sciences, 18, 1213–1223, 2014

[8] Pengfei Wang , Jian Chen, Fuchu Dai et al., Chronology of relict lake deposits around the Suwalong paleolandslide in the upper Jinsha River, SE Tibetan Plateau: Implications to Holocene tectonic perturbations, Geomorphology 217 (2014) 193–203

[9] https://www.internationalrivers.org/china%E2%80%99s-last-rivers-report

[10] Zhao-Yin Wang, Joseph H. W. Lee and Charles S. Melching, River Dynamics and Integrated River Management, Tsinghua University Press, Springer, 2015, 392

Posted in Tibet | Leave a comment

ELECTRIFYING TIBET

BIG RESERVOIRS AND BIG DAMS

#4 in a series of 8 blogs on China’s latest plans for Tibetan rivers

The big new reservoirs for diverting Tibetan waters northward to the exhausted Yellow River are far from the only Chinese interventions on Tibetan rivers scheduled for the 13th Five-Year Plan and beyond. While water is diverted north, electricity generated in Tibet by several cascades of hydropower dams is to be despatched east, right across lowland China to the industrial hubs of coastal China such as Shanghai and Guangzhou. This means exporting electricity as far as 2000 kms from where, in Tibet, it is generated.

The construction of the big reservoirs and the big dams are intertwined, firstly because the locations best suited to dams and reservoirs are usually packed into stretches of river with steep valleys, and secondly because the water diversion reservoirs in some cases need to be surrounded by hydro dams to generate enough electricity to pump water uphill from Yangtze tributaries and into Yellow River tributaries. Third, the hydro dams are to be supplemented, higher up in the headwaters of Tibetan rivers, by new reservoirs big enough to hold back the summer monsoon downpours, for later seasonal use, to guarantee year-round hydropower for Shanghai and Guangzhou. Big dams, in China’s plans, come in cascades, topped by big reservoirs.

However, just as the south-to-north S2NWestern Route of water diversion projects has created its own world of plans, rationales, arguments for and against, budgets and workforces; so too has the West-to-East plan for “transferring Tibet’s electricity out”, a literal translation of the official title of the program.[1] The connotation inherent in this way of framing the whole idea is that the electricity is already implicitly there, already existent. All that is needed is to actually build the hydro dams and the ultra high voltage power lines, and the electricity will be liberated from its entrapment in mountain rivers, and will flow freely to the east, instead of being wasted in wild and fast rivers heading south, often to the south of China altogether. This naturalises extraction, and gives it a suggestion of progress, modernity and even inevitability. S2N Western Route for water diversion, is now joined by W2E UHV electricity transmission.

pic of pylon construction

A similar phrase is used officially to define what in other countries is called the farmgate offtake rate, or turnoff rate, meaning the number of animals, or other farm products entering the market, available for purchase. In China this is, literally, “the come-out rate”,  脱出率, tuōchū lǜ, which can also be translated as “escape rate.”

The different concepts inherent in the different categories are significant. To turn off animals, to bring them to the farm gate, gives agency to the livestock producer. It is his/her decision to bring animals to the space in which they enter the commodity chain. In a modern ranching livestock economy, livestock and livestock products such as milk, meat or hides are considered to be marketable commodities at all points of the production process, while growing onfarm, and when available to buyers. In China, especially in Tibet, livestock herded by mobile Tibetan pastoralists are not only unavailable, they are invisible, barely subject to official scrutiny. Only when they do “come out” into the marketplace do they suddenly exist, as measurable commodities to be assigned monetary value. Until they “come out” they are known to exist, but not measurably so, and as their owners do not see their herd as meat-in-the-making, but rather as valuable in their own right, on the hoof, they cannot be considered commodities being readied for the market, unless and until the herd owner does, unpredictably, put them on the market. The concept of “come out rate”, the term used repeatedly in official statistics, awards all agency to the traders, slaughterers and meat processors to whom the animals “come out”; while the producer remains unnamed.

Implicit in the W2E concept of “transferring Tibet’s electricity out” is the embedded official rhetoric of Tibet as the (ungrateful) beneficiary of massive support and assistance from China, with little to show for it, little by way of pay-off. This is the discourse of the gift, not a gift freely given, but an official gift from a benevolent central authority which has every reason to expect reciprocity, a return payment of tribute that acknowledges official generosity. Tibetans have failed, it seems, to pay tribute or to express gratitude. The time has come to take what China needs. “Tibet’s electricity”, like Tibet’s natural resource endowment and mineral deposit patrimony are all assumed to be not only available for extraction, but to be, by virtue of being found and categorised, to be ready to come out into Chinese hands. From mineral deposit to mine is but a short step, in this popular imaginary. As soon as a mineral deposit has been identified, it becomes an asset. The entire grassland of Tibet can become an asset class, transformed by order from above, from livestock production landscape to carbon capture and watershed protection zone. The monetary loss when animals no longer “come out” to market for slaughter is considered minor, compared to the gain, for China’s soft power, of being able to point on maps to huge areas, mostly in Tibet, set aside for carbon capture and watershed protection.

On the high plateau China is rapidly giving up on animals “coming out”, as a hope that failed, in favour of a completely different mode of meat production by intensive feedlot ranching agribusinesses on urban edges. But China does not retreat at all from W2E “transferring Tibet’s electricity out” to distant cities of coastal China via power cables slung right across the country from west to east. Implicit in the concept is that the electricity, like the minerals and the meat, is already there, all that is needed is required infrastructure, of dams, turbines and power pylons, to transfer “Tibet’s electricity” to where it is in demand. Then the gift of development will at last bear fruit. This is an issue which the human geographer Emily Yeh has explored in much depth.[2]

As with intensifying the “come-out rate” and also with diverting Tibetan rivers northwards, the prospect of a dividend paid by Tibetan rivers in electricity production has a long history. This is a dividend for lowland China long anticipated, long planned and included in successive Five-Year Plans. The plan is for the ultra high voltage (UHV)  power lines to begin, in the valleys of Tibetan rivers, at an altitude of 3650 metres.[3] Power pylons and cables must march up and over mountain ranges, in as straight a line as possible, to minimise construction costs and loss of electricity. Where necessary, they will march straight over parks and protected areas, even over the UNESCO World Heritage Three Parallel Rivers (see a later blog in this series for more). The rivers and mountains of eastern Tibet are oriented NNW to SSE, while the power lines are west to east, so the extraction of electricity from Tibetan rivers necessitates many crossings of high mountain ranges, against the grain of the land.

Mountains make their own weather. Mountains can generate storms out of clear skies. Tibet, the land surrounded by mountains, is so susceptible to thunder and lightning that China made a big book  atlas of Tibetan clouds, because they are so unlike China’s clouds.

Tibet-Sichuan grid fur hatted Khampa delirious Xinhua Nov 2014

 

IS MASSIVE ELECTRIFICATION ACTUALLY GOING TO HAPPEN?

Yet the planning proceeded, as if all of nature can be conquered. A 2013 summary of this W2E mega project, by the Woodrow Wilson Center, states: “The West-East Electricity Transfer Project. Initiated during the 10th five-year plan (2000 to 2005), the project is designed to bring investment and development to China’s lagging west while satisfying the growing electricity needs of the country’s eastern provinces.

“The project’s first phase has been and is continuing to expand the western provinces’ electricity-generating capacity, primarily through the construction of new coal bases and hydroelectric dams. The second ongoing component is the construction of three electricity-transmission corridors that connect newly built generation capacity in the north, central, and south to the coast.

 “Each of the corridors is expected to exceed 40 gigawatts in capacity by 2020 – a combined capacity equivalent to 60 Hoover Dams. The seven recipient provinces – Beijing, Tianjin, Hebei, Shanghai, Zhejiang, Jiangsu, and Guangdong – together consume nearly 40 percent of China’s total electricity.

“Yunnan’s Nuozhadu Dam on the Mekong River was constructed as a part of this project, and has been touted as part of the backbone of the southern corridor, sending two-thirds of its output to Guangdong – the leading province in export manufacturing.

“The controversial Three Gorges Dam is an integral component in the central corridor, sending 35 percent of its electricity to the Yangtze River Delta – China’s second largest manufacturing region, behind Guangdong. The southern corridor also receives energy from the Three Gorges Dam, albeit only about 16 percent of the dam’s output.

“Also along the central corridor, the longest, single ultra-high voltage direct current line in the world connects the Xiangjiaba dam on the Yangtze River (between Yunnan and Sichuan provinces) to Shanghai. It is 1,287 miles long and has a capacity of 6.4 gigawatts.”[4]

west-east-electricity-transfer-project

China’s capacity to intercept Tibetan rivers, convert their rushing waters into electricity and transmit electricity on ultra high voltage power lines right across China, all rely on technologies China proudly proclaims to lead the world in. The ultra high voltage direct current (UHVDC) power lines stretching across the forested hills of Yunnan are pioneering Chinese technology, though specialist foreign assistance is still needed. China initially relied on Siemens for the first ultra high voltage lines across China from west to east, but now does the build itself.

It seemed China’s mastery of this new technology by the earliest years of this century had solved several nagging problems. UHVDC overcomes the old problem afflicting long distance transmission, that electricity leaks away, so much so that what arrives is much less than what was generated. All the glitches seemed to have been overcome, until the height of the annual monsoon plum rains, on 19 August 2010, when a lightning strike in the Yunnan hills caused such great electromagnetic interference that within minutes the entire system crashed. The same thing happened in the next monsoon season too: “On June 5th, 2011, a similar incident happened after a lightning strike to one DC pole, resulting in a bipolar block with power loss of 3500 MW and large electrical oscillations to the AC networks connected to both sending and receiving terminals.”[5]

The engineers thought they had built into their designs sufficient insulation to handle lightning strikes, but this was literally overpowering. The problem was unexpected, and meant a basic rethink, especially since the full rollout of the west-to-east electricity transfer includes hydropower stations and UHVDC power lines starting at high altitude in Tibet. Lightning strikes in Tibet are frequent, at an altitude deep into the troposphere, with mountain ranges roiling and forcing clouds to ascend sharply. Thunderstorms are common, and seem to come out of nowhere, with little warning, mostly in summer, but occurring unpredictably in any season.

Just when the technology seemed set, a rethink was needed, if Tibet was to be included. In thin air, how far apart do power lines have to be, if lightning flashover, from one line to another, is to be avoided? Was it back to the drawing board? Had the nature of Tibet yet again confounded Chinese expectations?

This is a massive project, requiring of the state and its state-owned corporations, massive outlays of capital expenditure (capex) to build all the dams, tunnels, turbines, pylons and ultra high voltage cabling across China from Tibet in the west to the cities of the east. The construction phase is measured in decades, with an even longer planning phase beforehand. Equally massive will be the profits, when wealthy urban consumers and industries pay for the electricity arriving from Tibet. Will Tibetans become power merchants?  Will Tibetans become electricity traders, selling to the highest bidder, as in many market economies? What will Tibetans be paid for the extraction of their water and energy of the wild mountain rivers tamed by dam cascades? Will the Khampa and Amdowa Tibetans of eastern Tibet be paid anything at all, either as compensatory “Payment for Environmental Services”, or as royalties for the loss of natural resource endowments? Or are the waters and energy inhering in those rushing waters treated as free public goods, free to whoever can capture them?

Suwalong dam earthquakes & fault lines

Although this project has been planned for decades, the planners are silent on these questions. By default, the assumption is that the rivers are a state-owned common pool resource, available to whoever can harness them to serve immediate human interests. Inevitably, the propaganda spin is that both S2N water diversion and W2E UHV electricity in turn deliver the gift of development to under-developed Tibet, for which the Tibetans should feel gratitude. And, at national and international levels, China is applauded for recommitting to renewable energy, including hydro, as an alternative to polluting coal.

In reality, it is not so simple. In the short-term, China has been squandering much of the hydro electricity generated by the dams built recently, dissipating the electricity created by turbines spun by water, because the electricity grid had no interest in accepting connections, or in integrating hydro fully into the mix of energy sources. This wasteful refusal to connect the dots was revealed in early 2016, after having intensified over many months.

 

IS WATER THE RESOURCE CURSE OF TIBET?

For most of this young century it seemed that, if the resource curse afflicted Tibet it would be due to extraction of minerals, especially as China’s manufacturing hubs move deep inland, away from coastal China’s high wages and environmental regulatory enforcement, to cities at the foot UHV DC route map 2016of the Tibetan Plateau such as Chongqing and Chengdu. Tibet’s endowment of copper, gold, silver, molybdenum, lead, zinc, lithium, potassium and common salt, as well as oil and gas fields, all portended intensive resource extraction, with very little employment or vocational training offered to Tibetans. Much was written about this impending resource curse, which turned out to be premature. As commodity prices started to fall sharply, starting in 2012, mining companies worldwide started to scale back their investments in opening up new mines and the infrastructure of processing and transporting minerals to markets. China’s state-owned energy and mining corporations, for many years at the forefront of China’s learning to do business worldwide, including global sourcing of raw materials, slowed their investment in the many big copper deposits in Tibet, which all produce gold, silver and other metals along with the copper. These may yet become a resource curse, if they do again scale up, and if they further displace and disempower local Tibetan communities, while failing to train or employ them.

Meanwhile, S2N Western Route water diversion and W2E UHV electricity transmission now loom as more immediate prices to be paid by Tibetan communities, especially in the deeply unhappy prefectures of Kandze and Ngawa in Sichuan. The resource curse is imminent, but its  focus has shifted. When minerals are dug out of the ground, the concept that they belong, at least in part, to local communities, is well-established, and embedded in the concept of “resource rental” taxes payable by miners to communities (or governments) in compensation for the loss of resources.

No such concept applies to water or to hydropower, both of which are classified as “renewable”, and therefore self-regenerating. No royalties or resource rental payments apply. In the minds of central planners, both have been going to waste, and it is a sign of an advanced civilisation that at last the waste is to be stopped, and these resources put to human use. How could wasteful Tibetans suddenly expect to be paid?

The entire W2E UHV electricity transmission project is driven by the 2004 electricity shortage, in the coastal cities which were then the locus of the world’s factory. At a time when the world’s factory was not only in China, but concentrated in a dozen coastal cities, the only constraint on China making anything and everything the world would buy was the power shortage. No matter how much China (with the World Bank) tried to build coal-fired power stations in those cities, expand the rail network to get coal trains from the north to the cities of eastern and southern China, and build even more power stations in the north, it seemed impossible to keep up with demand. A dramatic new alternative was needed. The coastal cities, instead of always looking north for energy, could also look west, to the rivers of Tibet. The moment for W2E UHV had come.

In reality, it requires three successive Five-Year Plans to actually build the infrastructure needed, if not longer; and over the 15 years from 2006 to the planned W2E UHV completion date of 2020 much has changed. China’s imports of raw, unprocessed commodities requiring electricity for processing, has dropped. Demand for China’s manufactured exports has dropped, month after month. Manufacturing hubs are moving inland. China is trying to create a consumer-driven economy, no longer reliant on producer-driven heavy industry backed by state finance. Much energy-intensive industry such as aluminium smelting, has shifted to Xinjiang, where coal is plentiful and local populations are in no position to demand environmental regulations be enforced.

Despite these many deep shifts, W2E UHV continues to be built. It has become a question of national pride, and becoming an exemplary showcase for China’s power grid builders, who seek contracts worldwide building power networks.

As a package of alluring hydro potential, China’s West offered many opportunities, with Tibet the most remote and thus the last to be interconnected. Below Tibet there are also dams and hydropower stations to be built, and they were built first. The logic could be explained simply: “Nearly two-thirds of hydro resources are distributed in the south west and west of China, including Sichuan, Yunnan and Tibet provinces. Two-thirds of the coal reserves are distributed in the north west and north of China. On the other hand, two-thirds of electricity loads were in the east of China where there is a lack of electricity energy sources. The distances between the areas of energy resources and energy demand are up to 2000km, which means that it is easier to transport electricity than the raw energy resource.”[6]

This is the logic, a decade later, still driving W2E UHV. A major reason why intensive exploitation of hydro potential is still at the top of the energy agenda is the failure of China’s coastal cities to embrace gas as an energy source that is plentifully available within China, by pipeline from just beyond China in Central Asia, and, for those coastal cities, also readily available by ship from afar. The plan was for a big transition to gas, because many gas fields were discovered, so many in fact that gas prices have remained low, due to oversupply. A further reason was to reduce air pollution, as gas burned to generate electricity does produce greenhouse gases, but not as badly as coal. But not all plans come to fruition, especially when it is up to local governments and corporations to invest in switching technologies, from coal to gas.

China is also investing in the biggest expansion of nuclear power ever, also in the hope of exporting its nuclear power stations worldwide. And China’s investment in solar power and wind power, again driven by hopes of dominating export markets worldwide, has been massive. Yet none of these have deflected the 15 year plan to have W2E UHV electricity operational by 2020. Despite the talk of a “green China”, with greatly improved energy efficiency, one constant has been the assumption that electricity demand will continue to rise and rise.

ultra high voltage line map 2006

 

 

Because of the enormous distance between Tibetan generators and Shanghai consumers, China opted for not only ultra high voltage, but also DC direct current, which requires fewer lines. That might seem an advantage, but from the viewpoint of the security state, ever vigilant against the danger of splittists and terrorists, reliance on a few UHV lines is also a risk: “Concentrating the power transfer on a smaller number of overhead lines obviously increases the operational risks posed by these lines being taken out of operation in an unplanned fashion, either due to random reasons such as weather related incidents or technical failures, or due to malicious attacks and sabotage.”[7]

China’s embrace of not only ultra high voltage but especially  UHV direct current (DC) requires a bipolar set-up, exaggerating the danger of the whole system crashing if disrupted by lightning. UHV DC also requires the use of many thyristors of a very uniform quality, achievable only by neutron bombardment done within a nuclear reactor: “Neutron bombardment leads to a homogenous distribution of impurities with very small distortions of the crystal, which is ideal as semiconductor material for high-power thyristors used in HVDC converter stations. The doping of semiconductors with neutrons is carried out in research reactors or in reactors of nuclear power plants.”[8] Mastering this technology, on the huge scale required for transmission of electricity as much as 2500 kms across China, from Tibet to Guangzhou, leaves some experts sceptical about whether China can meet its target of 2020.[9]

But China officially is committed to going ahead, and becoming a leading global builder of UHV DC in many countries. The transmission of electricity right across China, from Tibet to Shanghai will be the exemplary model, the proof of China’s capabilities, with State Grid Corporation feted as China’s national champion. Exporting electricity from Tibet will enable China to export its grid builders globally. The Tibetan dividend is more than water and electricity. It “unites China”, builds a unitary state whose citizens are of only one nationality, the Chinese nationality (Zhonghua minzu); all other identities being erased. Electricity from Tibet becomes China’s calling card to do something similar worldwide.

[1] http://en.kangbatv.com/news/201604/t20160429_2768541.shtml#sthash.XnY5bySt.dpuf

[2] Emily T. Yeh, Taming Tibet: Landscape Transformation and the Gift of Chinese Development, Cornell, 2013

[3]Z. Y. Sun, W. M. Liao, Z. Y. Su and X. J. Zhang, “Test Study on the Altitude Correction Factors of Air Gaps of ± 800kV UHVDC Projects”, Power System Technology, Vol. 32, No. 22, pp. 13-16, 2008.

  1. L. Yang, F. Z. Zhang, F. Zhao, L. M. Wang and Z.C. Guan, “DC Flashover Performance of ±800kV Composite Post Insulator in High Altitude Area”, High Voltage Engineering, Vol. 35, No. 4, 749-753, 2009.

Yongxia Han, Li Tang, Licheng Li, Qiuping He, Yanpeng Hao and Senjing Yao, Influence of Lightning Flashover Criterion on the Calculated Lightning withstand Level of ±800 kV UHVDC Transmission Lines at High Altitude; IEEE Transactions on Dielectrics and Electrical Insulation Vol. 22, No. 1; February 2015

[4] https://www.wilsoncenter.org/article/map-chinas-west-east-electricity-transfer-project#sthash.IRiTjSBS.dpuf

[5] Xiao Zhang, Zhanqing Yu, Jinliang He, et al., Mechanism of ±800 kV HVDC converter abnormal block fault causedby lightning transient,  Electric Power Systems Research 113 (2014) 157–164

[6] X-P Zhang, C Rehtanz and Y Song, A Grid for Tomorrow,  IET Power Engineer | October/November 2006

[7] A Grid for Tomorrow

[8] Christof Humpert, Long distance transmission systems for the future electricity supply: Analysis of possibilities and restrictions,  Energy 48 (2012) 278-283

[9] Humpert, Long  distance transmission systems

Posted in Tibet | Leave a comment

TIBET’S FORGOTTEN INTERNATIONAL TRANSBOUNDARY RIVER

HOW TIBETANS AND BEIJING INTELLECTUALS TEAMED TO PROTECT A WILD RIVER

 

#5 in a series of 8 blogs on China’s latest plans for Tibetan rivers

 

The Gyalmo Ngulchu/Nu is the one wild mountain river of hinterland China where damming was halted by an NGO campaign that skilfully mobilised scientists, local communities, minority nationality communities further upriver, and key Beijing intellectuals able to speak privately with central leaders.

In 2016 it is 12 years since that successful campaign. Today China’s official hydropower dam plans for the Nu/Salween list no less than 26 dams, before the river exits to Myanmar, having traversed both Tibet Autonomous Region and Yunnan.[1] Only three years ago Chinese environmentalists, writing in 2013, little more than a year after Xi Jinping took power, optimistically listed no less than eight of the 26 dam sites as “cancelled”, with only two already completed, and the remaining 16 somewhere in the planning process.[2]

But in 2016, can we still be so optimistic? According to National Geographic’s recent story, local environmentalists on the Nu remain hopeful. Do they have a choice? In today’s increasingly authoritarian China, to directly disagree with official policy can be a criminal offence. So, what is current official policy?

CEF Wilson map of planned and actual dams 2014

Although the Gyalmo Ngulchu/Nu/Salween is not as well-known as the Mekong or Yangtze, it is 2800 kms long, and supports a human population of 10 million within its watershed. It begins much farther west than the Mekong or Yellow Rivers, at ~32°N, 91°30’E, in high plateau pastoral districts of Nagchu prefecture due north of Lhasa. The river’s brief moment of fame came in 2004, when Premier Wen Jiabao agreed to a halt on further damming, the culmination of a long and skilful mobilisation of social forces, including Beijing insiders and remote ethnic communities in their steep valley lands. Because of the singular success of this campaign, the story of how this coalition of insiders and outsiders, the privileged and the disempowered, actually halted the damming, has been told by many who were involved. These are stories of unlikely and uncommon alliances, and newly forged personal friendships, of urban Han Chinese learning to see through the eyes of minority nationalities, of scientists and illiterate farmers finding common cause, to protect the Nu and the nearby Dri Chu/Jinsha/Yangtze.[3]

After the first group of journalists who travelled to Nujiang began reporting on the beauty of the area, which is notably a World Heritage Site, other journalists flocked to the basin. Within weeks hundreds of news stories and broadcasts across China were condemning the planned dams and the lack of transparency in their planning –they had not undergone the required environmental impact assessment (EIA). Environmental NGOs created a network organisation called China Rivers Network to coordinate their joint work, setting up photo exhibitions around the country to highlight the beauty of this endangered river to the public and send petitions to central leaders.”[4]

The social movement to protect the Nu River and its close neighbour the Dri Chu/Jinsha/upper Yangtze from damming even had its martyr, a young activist who died of exhaustion. This in turn became a key metaphor for famous public intellectuals such as Wang Hui.[5] His essay is a tribute to the “Son of the Jinsha River”, Nu riverscape 2 , who died young, exhausting himself in his round the clock campaigning to mobilise communities against the construction of a hydro dam.

Wang Hui, then editor of the liberal Dushu journal, had published a 2001 ethnographic piece by Xiao, and they had met. Wang published more by the energetic young anthropologist, but, he says, never found time to take a look at a novel Xiao wrote. As the campaign against the dam gathered strength, a Tibetan scholar Ma Jianzhong, recruited Xiao to join, and they organised a symposium in the prefectural capital of the Tibetan portion of Yunnan province, Zhongdian, later renamed Shangri-La (Xiang-er-li-la) to attract tourists. The symposium, an attempt at framing the hydro debate on Tibetan terms, was called “Tibetan Cultural and Ecological Diversity.”

Xiang recruited Wang Hui, the famous editor into his world, persuading him to stay, in Zhongdian, in Xiao’s family home, during the symposium. There Wang Hui discovered the modern Tibetan academy, authors of encyclopaedic Tibetan histories, erudite Tibetan monks who had come from Qinghai, and, from Beijing offices near by Wang Hui, “Mr Zhambei Gyaltsho, a colleague of mine from the Chinese Academy of Social Sciences who as in the Institute of Ethnic Literature. I was part of the Institute of Literature, and purely due to this separation, we had never met.”

In this multicultural region of Yunnan, with Han Chinese the newcomers, the Tibetans of the upriver uplands made a strong, inclusive case for “ecological and cultural diversity as being very closely linked, and that any attempts to differentiate groups within a community based upon ethnicity and religion would rapidly erode its cultural multiplicity and any other of its organic relations, producing new inequalities. Xiao Liangzhong’s interest in his hometown did not arise from his interest in a particular ethnic or cultural group, but rather in the social networks woven together through history and their multiplicity.”

Nu riverscape 4

Wang was able to appreciate that the Tibetans were not chauvinists, they skilfully included everyone, and he got further involved. Seeing this Tibetan move to include all, Wang Hui became engaged in the drafting of a proposal calling for the dam project to be halted.

The essay opens with Wang Hui arriving in a remote village to pay his respects to the young man’s grave, on Tomb-Sweeping Day, a scene he evokes in detail. Xiao’s death galvanised the villagers, who “believed he died to protect his homeland, and his death motivated them to protect it, too. Some of the villagers thought of him as a river spirit who could bless and protect their home. The death of Xiao Liangzhong caused an upsurge in local sentiment against the dam project.[6]

When the community put up the memorial declaring Xiao “The Son of Jinsha River”, an old farmer said: “Rivers on the earth are like veins in the human body. If you were to block off your own veins, you would die. The earth is the same.”

An old woman said of the young man who died that he “was just 32 years old when he left us. I’m more than 60 –I’ve lived long enough. If I could exchange my body of flesh and blood for the long-term peace and stability of this land, so that the Tiger Leaping Gorge Dam wouldn’t be built, I would be willing today to have my body smashed to pieces and my bones ground to powder.” This old woman succinctly summarised a transformative Tibetan meditation practice, of imagining one’s death, the way she describes it, as a way of overcoming all fear, and attachment to existence.[7]

Nu riverscape 1

 

It was this mobilisation that succeeded in pressuring the Yunnan provincial government to cancel the dam, as long as the protesters dispersed quickly, which they did. This account, more detailed than Wang Hui’s, makes it clear that the climax, well after Wang’s Tomb-Sweeping Day homage to his young friend, was achieved by 10,000 angry villagers surrounding government buildings, demanding justice, holding officials hostage, and refusing to disperse despite the threat of the ruthless armed police quelling them. Only when it was clear that both the Tibetan prefectural officials and the Yunnan provincial officials accepted their demands did they save everyone’s face by going home.

The skill of the Bai and Tibetan intellectuals in the Confucian arts of recruiting Wang Hui as protector and patron did much to give the social movement momentum, but it was won by mass protest, the courage of people who have been lied to too often. That’s not quite how Wang Hui tells it, but in Liu Jianqiang’s retelling of a long personal involvement with reporting the issue. It is not often that Han Chinese learn how to see through Tibetan eyes: Liu Jianqiang is an exception.[8] The Tibetan environmentalists he understands so well are now in prison.

In 2016, it is hard to imagine such a movement becoming, still less succeeding in halting a series of dams deemed necessary to national development and energy security. In the current situation of renewed authoritarianism, such mobilisations are quelled before they gather momentum. 2004 looks like a different country, which no longer exists. The Nu/Gyalmo Ngulchu/Salween is again vulnerable.

Nu riverrscape 3

ARE THE DAM BUILDERS MAKING A COMEBACK?

Due to this decade long moratorium on damming the Nu, it remains a largely wild river, especially in its long reach across Tibet. It starts far to the west, crossed by the main highway and railway coming south, over the Tanglha mountains en route to Lhasa. A track alongside the Nu river was for centuries the tea horse road, where Tibetan took their sturdy mountain horses downriver, to trade with Yunnan’s tea growers.[9] Above, on the high plateau of Tibet, the Nu/Gyalmo Ngulchu cuts through pastoral country for over 1000 kms. There are only two dams very high up the basin, modest by today’s standards, built in the 1990s to provide electricity to small Tibetan towns in Driru county, and to electrify mining which in recent years has caused great grief among the Driru Tibetans.[10]

Between these two small dams and the entry far down river of the Nu into Yunnan and then Myanmar, there are many designated sites for hydro dams, named (going downriver) in China’s planning documents, as Reyu, Luohe, Xinrong, Tongka, Kaxi, Nujiang Qiao, Yeba, Lalong, Luola, Angqu and Emi dams, 12 altogether. Some of these are planned to be massive dams, most are at least 500 MW in electricity generating capacity. Angqu is to be 1500MW. Now that China’s environmental NGOs have again been silenced, likewise the Tibetans, who were never allowed to create their own environmental NGOs, will these dams athwart the Gyalmo Ngulchu/Nu/Salween yet be built?

 

proposed hydro dams Thre Parallel Rivers official Chinese map 2015

 

WORLD’S TALLEST DAM

Even the most enthusiastic of central planners propose a 15-year timeframe, to 2030, for construction of the full hydro dam cascade on all Tibetan rivers. So it may not be clear for some time how many of these dams will be built. But a little downstream from the 12 listed above is a truly massive dam, where construction was well under way by 2014.[11] Rock mechanics scientists describe this dam, in the south easternmost corner of Tibet Autonomous Region, just before the Nu enters Yunnan: “A concrete double-curved arch dam with a maximum height of 318 m is planned, which will be one of the highest arch dams in the world. The elevation of the normal storage water level will be 1925 m and the total storage capacity will be 4.55 billion m3. The station will have a hydroelectric generating capacity of 3600 MW.”[12]

Songta dam construction 1 Songta dam construction 2

 

 

This is the Songta dam, (~28°10’N, 98° 30’E) not only “one of the highest”, but actually the tallest dam in the world if completed as planned.[13] Remarkably, it has attracted very little attention. As design and construction difficulties mounted, in this remote narrow gorge, the installed electricity generating capacity of this dam has been steadily reduced, but 3600 MW (3.6GW) remains a massive output, if achieved and actually utilised.[14] Songta provides a yardstick to gauge whether the other dams further up the Gyalmo Ngulchu/Nu will be built. If Songta is built, all 12 dams further upstream are also possible.

To Tibetans this is “the aptly named Tsawarong, where sweet cactus fruit grow and the temperature can exceed 108 degrees.”[15] Trekking this surprising corner of Tibet, Gyurme Dorje notes that some of the most famous teachers and exponents of direct experiential understanding of the nature of reality were from here. It was here that Tibetans who had entered the inconceivable, the unlanguagable, nonetheless found ways of transmitting their insight into the nature of reality, that is beyond all words and concepts. One might argue that this constitutes world heritage.

 

Khawa Karpo 2

Beyond old Tsawarong, at the extreme edge of Tibet Autonomous Region’s border with Yunnan province, rises Khawa Karpo, the mountain the separates the Gyalmo Ngulchu/Nu from the nearby valley of the Dza chu/Lancang/Mekong, and the capital of the Tibetan Autonomous Prefecture of Diqing, Yunnan’s designated Tibetan region. The city of Dechen (meaning in Tibetan the great bliss that comes of realising the nature of reality) is now officially renamed Shangri-La. The rebranding sparked a tourism boom grounded in a 1930s Englishman’s fiction of a pre-Great War paradise of eternal life hidden in the Tibetan mountains. James Hilton’s invention of Shangri-La in his best seller Lost Horizon has been literally territorialised, made into a historic reality, to attract tourists, which it does. Dechen-cum-Shangri-La, on the Dza Chu/Lancang/Mekong is in the shadow of Khawa Karpo, with the Gyalmo Ngulchu/Nu the floor of its opposite side.

Khawa Karpo 3 Khawa Karpo 4

Khawa Karpo is one of the most popular pilgrimage circuits in all of Tibet.[16] On this arduous pilgrimage Tibetans purify the mind, dropping habits of a lifetime, to restart life anew .

 

 

 

 

 

 

 

 

[1] Sites 155 to 181 on the full list of planned dams in and just below Tibet, in The ‘Last Report’ on China’s Rivers, 2014 https://www.internationalrivers.org/china%E2%80%99s-last-rivers-report

[2] https://www.internationalrivers.org/files/attached-files/final_rivers_report_20140218_small.pdf

[3] Liu Jianqiang, Defending Tiger Leaping Gorge, 203-235 in Sam Geall ed., China and the Environment: The Green Revolution, Zed Books, 2013

https://www.chinadialogue.net/article/show/single/en/811-Fog-on-the-Nu-River

Zheng Qi, The Nu River Campaign and Changes in Governmental Agenda-Setting, The China Nonprofi t Review 2 (2010) 71-82

Brown, Philip H. and Xu, Kevin(2010) ‘Hydropower Development and Resettlement Policy on China’s

Nu River’, Journal of Contemporary China, 19: 66, 777 — 797

Darrin Magee,  Powershed Politics: Yunnan Hydropower under Great Western Development, China Quarterly #185, 2006, 23-41

Lihui Chen, Contradictions in Dam Building in Yunnan, China: Cultural Impacts versus Economic Growth, China Report 2008; 44; 97

[4] Jennifer Turner, Reaching Across the Waters: International Cooperation Promoting Sustainable River Governance in China, Woodrow Wilson Center, 2006

https://www.wilsoncenter.org/publication/reaching-across-the-water-2006

https://www.wilsoncenter.org/publication/chinese-translation-reaching-across-the-water

[5] Wang Hui, Son of the Jinsha River: In Memory of Xiao Liangzhong, 173-190 in Wang Hui, The End of the Revolution: China and the Limits of Modernity, Verso, 2009

[6] Liu Jianqiang, Defending Tiger Leaping Gorge, 203-235 in Sam Geall ed., China and the Environment: The Green Revolution, Zed Books, 2013

Liu Jianqiang, The role of civil society in China’s anti-dam campaigns, in Brahmaputra: Towards unity, http://thirdpole.n.infoamazonia.org/wp-content/uploads/sites/2/2014/02/Brahmaputra-Towards-Unity.pdf

[7] http://www.tibetanchod.com/cho/fearlessness/     http://www.rinpoche.com/teachings/chod.htm

[8] https://rowman.com/ISBN/9780739199732/Tibetan-Environmentalists-in-China-The-King-of-Dzi

[9] Michael Freeman and Selena Ahmed, Tea Horse Road: China’s ancient trade route to Tibet, River books, Bangkok, 2015, 3

[10] Senior Buddhist scholar arrested as repression escalates in restive Tibetan county,   Tibetan Centre for Human Rights and Democracy, 14 July 2014

Tibetan man in fatal protest over mining operations, Free Tibet media release, 8 May 2014

Young Tibetan Mining Protester Dies in Prison After ‘Torture’, Radio Free Asia, 2014-02-06

Environmental Protests on the Tibetan Plateau, Thematic report commissioned by Free Tibet, 2015

[11] https://www.internationalrivers.org/resources/china-dam-project-slated-for-nu-river-quietly-passes-key-hurdle-8381

[12] Identification of structural domain boundaries at the Songta dam site based on nonparametric tests, Yanyan Li, Qing Wang et al., International Journal of Rock Mechanics & Mining Sciences 70 (2014) 177–184

[13] https://www.internationalrivers.org/resources/china-moves-to-dam-the-nu-ignoring-seismic-ecological-and-social-risks-7807

[14] https://www.internationalrivers.org/resources/china%E2%80%99s-domestic-dam-plans-draw-ire-at-home-and-abroad-7882

[15] Gyurme Dorje, Tibet Handbook, 4th edition, 2009, 515

[16] Katia Buffetrille, The Pilgrimage to Mount Kha ba dkar po: A Metaphor for bardo?, 197-220 in Christoph Cueppers ed., Searching for the Dharma, Finding Salvation – Buddhist Pilgrimage in Time and Space, Lumbini International Research Institute, 2014

Giovanni Da Col,  The View from Somewhen: Events, Bodies and the Perspective of Fortune around Khawa Karpo, a Tibetan Sacred Mountain in Yunnan Province, Inner Asia 9 (2007): 215–235

Jan Salick, Anthony Amend et al., Tibetan sacred sites conserve old growth trees and cover in the eastern Himalayas, Biodiversity and Conservation (2007) 16:693–706

Posted in Tibet | Leave a comment

OVERPOWERING TIBET

ELECTRIFYING THE WORLD FACTORY FROM TIBET

#6 in a series of 8 blogposts on China’s latest plans for Tibetan rivers

While big reservoirs to capture and divert waters of Tibet to northern China are new, official plans to dam Tibetan rivers for hydropower have been known for many years.

Maps of the planned cascades of dams, on almost all the rivers traversing and descending from Tibet, have been published by exiled Tibetans worried at the impact of planned dams on Tibetan communities used to self-sufficiency in the deep valleys of precipitous Kham. The dams have been featured on China’s official websites for many years, and listed in successive Five-Year Plans, but slow to build. Generally the dams that have been built, some of them very big, have been somewhat downriver, just beyond Tibetan areas. The plan all along has been to steadily move the dam building upriver, to move gradually into steeper terrain, higher altitudes and  districts more remote from lowland China.

But the announcement that changes everything came in April 2016, of a start on the Suwalong hydro dam, straddling the border China has drawn that bisects Kham, with the Yangtze (known in Chinese, on this stretch, as the Jinsha) as the actual boundary. Between the Tibetan towns of Bathang, on the Sichuan side of the Dri Chu/Yangtze/Jinsha, and the town of Markham, on the Tibet Autonomous Region (TAR) side, this dam is specifically designated as the first to be built for the purpose of exporting electricity right across China to east coast cities and industries.

dam sites Zungchu dam sites Megoe tso dam sites Dadu

Tdam sites Zungchu tributarieshe Suwalong dam is the start of a new era for Tibet, of resource extraction on a scale not seen before, for very distant beneficiary users in the world factory of Guangzhou and Shanghai.

The official announcement states: “The Suwalong hydropower station is the first large-scale hydropower station constructed on the upper reaches of the Jinsha River. This is an important project regarding supporting Tibetan socio-economic development which was defined at the 5th National Conference on Tibet Work; it is also the first project regarding West-East electricity transmission projects carried out by the central government. The construction of the Suwalong hydropower station is also very significant for the construction of the West-East electricity transmission project, therein pushing forward ‘transferring Tibet’s electricity out’ as well as the socio-economic development in the local area.”[1]

By any measure, this is a large dam. The total installed capacity of the hydropower station is 1,200,000 kilowatt (1.2GW) with a total capital expenditure budget   of 17.89 billion yuan (USD 2.89 billon). Officially, “at the moment, the construction objects such as roads, power supplies and camps within the Suwalong Hydropower Station construction site have basically been finished,  and the over 900-meter-long diversion tunnel are under rapid construction. The body part of the project will start to be constructed in November, 2017 after the dam on the Yangtze River is done.” [2]Within this tight and narrow valley, the entire river has to be diverted during the main dam construction, and work is well under way.  The dam wall is 112 m high, and output is expected to be 5,400 gigawatt hours (GWh) of electricity a year when completed in 2021.

There is much scientific evidence, specifically at Suwalong, of at least three major earthquakes which triggered landslides big enough to block the Yangtze, later bursting disastrously as the blocked river backed up.[3]

Going upriver from the Suwalong dam, no less than 17 more dams athwart the main channel of the Dri Chu/Yangtze are planned, deep into the Tibetan Plateau. These are known in Chinese as the Batang, Lawa, Yebatan, Boluo, Yanbi,  Gangtuo, Guotong, Sewu, Xirong, Cefang, Genzhe, Leyi,  Dequkou, Ruoqin, Lumari, Yage and Marigei dams.[4]

Going downriver, below Suwalong dam, on the Yangtze, there are a further 18 dams, all upriver from the Three Gorges, of which four: the Jinanqiao, Ahai,  Xiangjiaba and  Xiluodu dams are operational. By 2010 the power line, all the way from Xiangjiaba to Shanghai, just under 2000 kms, was in place, proudly built by the Swiss/Swedish company ABB.[5] Siemens was a major supplier of high technology.[6] The dam, at the foot of the Tibetan Plateau, became fully operational four years later, in late 2014.[7] Likewise, the neaby Xiluodu dam, second only to Three Gorges in size, became fully operational in 2014 after a build that took a decade.[8] This list is only of dams on the main channel of the Yangtze, and does not include dams on tributaries, such as the Yalong River of Tibet, on which the world’s tallest dam has been built, Jinping 1 (and below it Jinping 2) in a seismically active zone, with evidence already that the weight of impounded water is triggering more earthquakes, even though these dams are still new.[9]

These dams, plus the Three Gorges, already have a major impact on the flow of the Yangtze. Researchers report that: “A significant decrease in discharge from the upper basin occurs in October as water is stored for later release in January to March.”[10] This seasonal imbalance will only intensify as more water is impounded in more dams for hydro power purposes.

To China’s planners, and the bosses of the huge state-owned corporations dominating energy supply, the case for extracting hydropower from Tibet is cogent, self-evident and the basic argument has remained constant over many years. For example, the powerful chairman of the State Grid Corporation board, Liu Zhenya reminds us that extracting energy from Tibet is not new. Millions of tons of oil have been extracted from the Tsaidam Basin of northern Tibet since the 1980s, and gas since the start of this century.

In 2013 Liu pitched his case for the high modernist fantasy of a completely integrated grid of extraction, inclusive of all forms of energy, from north to the south, and from west to east. “Driven by China’s growing economy, the demands for energy in developed regions will increase dramatically and the imbalanced distribution of energy supply and consumption areas is bound to become more notable. That makes large-scale, cross-regional or long-distance allocation of energy resources inevitable. In the future, China will generally transport energy from the west to the east, and from the north to the south, and the scale of energy flow will expand considerably. The scale of power transmission from the west to the east and from the [coalfields] north to the south, is expected to be substantially expanded. Oil will continue to be transported from the west to the east. Natural gas will be transported from the west to the east. The scale of energy transport will become bigger and bigger, which will impose higher demands on energy transport. Building a highly modernised energy transport system has become a major strategic task.”[11]

This is the language of high modernism, of logic, efficiency, necessity and inevitability; to be accomplished through the mechanism of allocation by the eye of a party-state with the capacity to know precisely what is objectively needed. Yet Liu’s language also recapitulates the metaphors of traditional Chinese medicine, with its energy flows throughout the imagined body, and the importance of maintaining balanced flows to all organs, reducing excesses and replenishing deficiencies. This is a central planner’s high modernism  with Chinese characteristics. China is a singular geobody, in which all limbs and organs must be in balance.

Liu graduated from the Shandong Industrial Institute, and joined the Communist Party in 1984. He served as director of the Shandong Provincial Electric Power Bureau until 1997. He was president of the State Grid Corporation of China from 2004 to 2013. He was also an alternate member of the 17th CPC Central Committee. In 2013 he became Chairman of the Board of Directors of the State Grid Corporation of China.[12] One year later China’s government auditing agency alleged more than $1 billion was misappropriated in less than four months last year while constructing and running portions of a major electricity grid system. “China National Audit Office said its probe into certain contracts for a west-to-east electricity-transmission system uncovered theft and contract irregularities totaling 6.7 billion yuan ($1.1 billion); in some areas, the problems amounted to 16% of the value of the contracts reviewed.” [13] Liu Zhenya survived the corruption investigation and remains in charge.

To Liu and his fellow central leaders, it is self-evident that Tibetan water and hydropower must now nourish eastern China, since the developed east has done so much, in the “aid-Tibet” program, to nourish Tibet, often depicted as a body that is weak, stagnant and sickly, in great need of a blood transfusion.

Liu Zhenya book cover

Mr. Liu drew an analogy: “The Internet is like the nervous system, while electric grids are like the blood vessels. As the nervous system is interconnected, so must the blood system be.”[14] Tibet, previously depicted as anaemic, to be revived by a blood transfusion from the Han older brother, will now become a blood supplier to China. By literal extension of UHV DC to the world, China will in turn become blood supplier to the world, for profit.

Once the cascade of dams is built, not only in the current 13th Five-Year Plan period, but over the two successive Five-Year Plan periods, as envisaged, the amount of electricity to be exported from Tibet is huge. Liu Zhenya wrote in 2012: “Hydropower will be developed in Tibet and transmitted to other regions on a large scale. Power generated in the large hydropower bases will be transmitted from Sichuan to central and eastern China, and from Yunnan to Guangdong. The volume of hydropower from the southwest region will reach 54.5 GW (gigawatts), 76 GW and 120 GW by 2015, 2020 and 2030 respectively.”[15] By comparison, the world’s most powerful hydro dam, the Three Gorges, has a generating capacity of 22.5 GW. Thus, by 2020, the target in Tibet and just below, is for the equivalent of three Three Gorges Dams by 2020, and almost five by 2030.

Liu is certain these west-to-east (W2E) projects are needed, as electricity demand will continue to grow. He has little to say about mitigating climate change, but has glowing projections of future demand: “In the coming 20 years, the electricity demands in China will continue to grow rapidly and the eastern and central regions will be the load centres in China. Studies show that China’s peak loads in 2015, 2020 and 2030 will respectively reach 1010GW, 1410GW and 1940GW, or respectively 1.5 times, 2.1 times and 3.0 times the level in 2010. Total power consumption nationwide will respectively top 6300, 8600 and 11,800 TWh (terra watt hours).”[16] Even if all 181 dams in eastern Tibet are built as planned, they will still provide only four per cent of China’s electricity consumption, and that much only if they operate continuously rather than as peak load supply hours only.

Whether the new dams will actually transmit as much electricity as planned is uncertain. Proponents of dams put the best case scenario, but in reality, hydro dams often fail to meet expectations. “China’s installed capacity in hydro is impressive, but its contribution to the country’s overall energy mix is far more modest. Due to rushed construction and other industry problems, Chinese dams are highly inefficient, with an average capacity factor of 31% – about two-thirds the world average. Capacity factor refers to the amount of electricity produced compared to the installed capacity.”[17]

Liu Zhenya UHV grid book cover

Transmitting electricity from Tibetan rivers west to east (W2E) has become an iconic project of the developmentalist party-state, a project of symbolic importance similar to the Three Gorges dam was for an earlier generation of central leaders.  W2E (xi dian dong song),must succeed, and the discovery of corruption must not slow it. China rewards energetic and highly visible bureaucratic entrepreneurs like Liu Zhenya, who get things done, whatever it takes.

Extracting electricity for the rivers of Tibet is only the start for Liu Zhenya and State Grid Corporation, who now promote a global vision of installing the UHV DC technologies to be installed in Tibet, on a planetary scale. Liu is now free to scale up his vision of unifying China with UHVDC power lines that make it a unitary geobody, into an even grander global vision of electrical interconnectedness, which his State Grid Corporation would build. Having made China one geobody, Liu now talks of a global grid, interconnected by UHV DC cables, in his China State Grid vision for a $50 trillion global power network that harnesses Arctic winds and equatorial sunlight.[18]

Leveraging the Tibet model into a pitch for a worldwide expansion of SGC technologies, Liu Zhenya enthusiastically promotes his concept of “Global Energy Interconnection” (GEI) at conferences sponsored by State Grid Corporation,[19] in speeches and his new books, published in 2014 and 2015, Ultra-High Voltage AC/DC Grids and Global Energy Interconnection. Liu enthuses that it is technically possible, using UHV DC power lines, to transmit electricity from Xinjiang, north of Tibet, all the way to Germany, and to do it cheaper than Germany can generate energy from wind and sun. “He said excess wind power from the northwestern Xinjiang Uygur autonomous region can theoretically be exported to power-short Germany via some 6,000 kilometres of long-distance, high-capacity UHV power lines, on which State Grid has said it has achieved technological breakthrough and commercial success. It has built seven such lines and plans to complete nine more in mainland China by the end of next year. According to its research institutes’ estimates, it costs 8 US cents per kilowatt-hour to generate and send wind power to the Xinjiang grid, and 4 US cents to then send it to Germany via UHV lines. The total cost of 12 US cents is half that of clean power generation cost in Germany, Liu said.”[20]

map of west to east ultra high voltage routes Wilson CEF

 

This global vision would extract electricity from  Africa to be sent to Europe via UHV DC power lines, and would also tap the gales sweeping the Arctic. “According to the State Grid’s timeline, by 2030, all countries’ grids will be connected within each continent. By 2050, all continents’ grids will be connected with each other, and 80% of the world’s electricity consumption should be covered by renewable sources. By then wind turbines at the North Pole and solar panels along the equator should play central roles in worldwide energy production.”[21]

Tibet-Sichuan grid at Batang xinhua pic Nov 2014


ULTRA HIGH VOLTAGE NATION BUILDING

The transfer of electricity from west to east W2E is a metaphor of reciprocity, of national unity, of exchange constitutive of a unitary nation-state. The language used deploys a striking metaphor of the horizontal line, inscribed three times across the geo-body of China, once in the north, once in the centre and once in the south, creating a singular China encompassing all difference. The three broad, bold brush strokes across China, from left to right, west to east, establish China as a natural entity, pre-ordained to succeed by the long-established north to south hauling of coal, the criss-crossing of high speed rail lines and now “transferring Tibet’s electricity out” to the east. This is nation-building on a grand scale, and the dividend for decades of modernising and civilising Tibet by building infrastructure. .

The same discourse strategy is used to define the high speed rail network, but less totally, as there are no plans to extend high speed rail beyond the fringes of the  Tibetan Plateau, which is one quarter of China’s landmass. The west to east W2E electricity transfer is bolder, ascending the edges of the plateau, successively extending the reach of the state further up the valleys incised over millions of years by Tibetan mountain rivers cutting as fast as the Tibetan Plateau has been rising.

Much as the United States fulfilled its manifest destiny by pushing westwards until it became one nation from sea to shining sea, Chinese researchers draw explicit parallels between developing western China and the history of the American West.[22]

China’s version of manifest destiny, the “China Dream”, is of a unitary state that has assimilated ethnic difference, transcended identity based on minority nationality, merging all into a single Chinese nationality; in which the exploitation of the “great west”, or xibu da kaifa, is seen as the naturalised reciprocity of the mandatory gift relationship, the return on capital invested in civilising the remote west. Most Chinese analysts, by lumping all western provinces together, find that the capital expenditure on infrastructure in the west has generated economic growth, as it was supposed to. But some researchers, looking at water diversions and transferring Tibet’s energy out, invoke the worldwide concept of the resource curse. For example: “East China is advantaged for relatively plentiful capital and institutional resources, while West China is disadvantaged for the “Resource Curse”. It is obvious that East China would not have developed as rapidly without the “food and blood” for industry from West China, and the sustainable development of East China has to be based on the ecological restoration and economic development of West China. Widening the economic gap between East and West China will destroy the harmonious coexistence of a multi-ethnic society and affect the nation’s political stability.”[23]

Since the turn of the century, official discourse has emphasized the need to redress inequality, be it the growing gap between neglected rural areas and booming cities, or the widening gap between east and west, or between Han and minorities. Three decades of letting those with the best factor endowments get rich first left rural and western China feeling much neglected, falling behind, and without much government provision of health care or social safety nets in case of destitution. In the 21st century’s opening years the rhetoric changed, promising to be more inclusive of those left behind. That was the context for xibu da kaifa 西部大开发, usually rendered into English as Western Development Strategy, but more literally “opening up the great west.” Opening up, like coming out and transferring out, are at first glanced benign, with connotations of a process that is both natural and inevitable. However, all these telling formulations originate in the point of view of the Han, to whom the resources of the west are opened, for exploitation. They are the stance of the outsider approaching the west, seeking its wealth, naturalising the flow of public goods of the west into China’s coal washeries and electricity intensive smelters.

Officially, this is development, an unquestionable and self-evident good, which benefits the recipient, bringing the Tibetans into modernity and the market economy. Diversion of rivers and cascades of hydro dams may be the price Tibet pays for integration into China, but they are also deemed beneficial to Tibet, constituting Tibet’s revitalisation, an end to stagnation, remoteness and weakness. It is even said that Tibet was timeless and outside of history, but thanks to China’s gift of development, Tibet has now entered history, according to a Marxist concept of the necessary path of social evolution.[24] Having entered history, Tibet may now progress, and eventually attain modernity and civilisation. That has been the standard Chinese narrative for many decades.

State Grid Corporation (SGC), the driver of W2E UHVDC extraction of electricity from Tibet, is enormously powerful, both due to its great size and capacity to spin mythologies of “unifying China” by its power lines. Of China’s many state-owned enterprises SGC is  a national champion, which has accumulated such wealth that it shrugs off corruption investigations, and forges ahead with its vision of acquiring assets globally, to knit into a planetary electricity grid, owned and controlled by SGC.

Within China SGC remains opaque, with no private shareholders and no obligation to report to stock exchanges on how it runs its business. In an attempt to break up this monopoly, in 2002 China’s central leaders split the National Power Corporation in two, with the newly created SGC awarded a territorial monopoly over most of China, while Southern Power got the rest. The plan was to further break these monopolies into five grid corporations, a pressure that SGC managed to successfully resist.[25] Nothing has been heard for a long time of reducing SGC’s domain.

State Grid Corporation is highly profitable, yet answerable to no-one other than the Communist Party. Fortune 500 ranks State Grid as the world’s seventh biggest corporation, ahead of Apple, Volkwagen and Toyota.[26]  Its accumulation of wealth enables it to bid to take ownership of state grids now being privatised in other countries: currently State Grid is bidding to become the owner and operator of the grid of Australia’s richest state, New South Wales. This capacity to “go out” and buy profitable assets worldwide endears State Grid to party leaders, who want national champions, able to make China into more than factory to the world, becoming a brand in its own right. Under Liu Zhenya’s leadership, SGC is now able to enlarge the “China Dream” to embrace a whole world of electricity grids, interconnected by SGC, on a planetary scale and with Chinese characteristics.

UHV DC east coast grid demand hourly 2016

This unchecked monopoly power makes some in China uneasy. In 2014 Caixin reported: “Some reformers have also called for further splitting up grid companies to break up their monopolies. The 2002 document set a plan for the State Grid to establish five regional grid companies with independent operations, but over the following years that idea was dropped. Some in the industry say the only way to push forward reform of the industry and improve market efficiency is to break up the grids. Bi Keli, deputy general manager of the Shandong branch of China Guodian Corp, one of the five major power generators, said in a recent article that the grids are the main obstacle to reform. Shao also said in a recent public speech that the gigantic central government-backed enterprises have become cradles for corruption due to their dominance over resources. He said the only way to improve operational efficiency and enhance government supervision is to split up the grids.[27]

Despite promises to give private enterprise the dominant role in the economy, and famous brands such as Alibaba keen to become an electricity retailer, there is no sign State Grid Corporation will have to share its profit base.

It is equally hard to imagine State Grid scaling back its ambition to dam the rivers of Tibet and bring back to Guangzhou and Shanghai a dividend of Tibetan power. State grid has woven the damming of Tibet into a master narrative of unifying China, of the three horizontal lines of power pylons W2E, bringing electricity generated in Tibet almost instantaneously to consumers in far distant cities.

This will mean that the rhythms of those mountain rivers will in future have to closely match the rhythms of electricity demand a thousand or more kms away. Unlike other commodities, electricity cannot be stored; it must be generated at the time it is needed.

Complex calculations published in 2016 suggest once the dams are built and the turbines are turning, the amount of water released will fluctuate not by season, or month, or day, but by the hour, depending on demand, and how cross-country direct current can be integrated into the national grid of alternating current. According to the experts of the Institute of Hydropower and Hydroinformatics, Dalian University of Technology, the Tibetan dam outflows must be adjusted every 15 minutes.[28] The people of Tibet, long disempowered by “development”, will find their rivers similarly disempowered, their flow rate governed by urban demand thousands of kms away.

In the great interconnected scheme of State Grid Corporation, this is all positive. Electrifying Tibet and transmitting the power across China will be of great benefit to Tibet, SGC’s Liu Zhenya says. What he proposes is a win for all.  The environment will benefit from greater use of renewable energy, resulting in less air pollution and acid rain. Long distance UHV DC transmission, Liu argues, will free up a lot of valuable eastern province real estate currently used for coal transport, storage and coal-fired electricity production. Meanwhile, western China, including Tibet, has land to spare.  Liu writes: “Accelerating the development of power transmission can help optimise and utilise land resources in the country. China’s western region is sparsely populated, with abundant land resources, while the eastern and central regions, which can be used for the restructuring and development of other industries, with high value-adding potential.”[29]

The Tibetan Plateau became a well-known brand within China when, in the 1980s, a slogan minted by the Ministry of Water Resources in Qinghai succeeded in attracting the attention  of national leaders, and then popular imagination. “Tibet is China’s Number One Water Tower” was the slogan, an essential mnemonic in a culture much driven by memorable slogans. Tibet at last had a definable benefit for China, specifically for water-short northern China. Other uses for Tibetan landscapes faded, especially pastoral livestock production, which seemed at best inefficient, at worst the cause of degradation. Once Tibet became useful to downstream China, its sole purpose, over a large portion of eastern Tibet designated as Sanjiangyuan , the Three Rivers Source region, was as a watershed.

Having made Tibet, especially eastern Tibet, a watershed, it has now also been designated as a powershed, a similarly naturalised category, full of hydropower energy just waiting to “come out” and race across China to major coastal industries hungry for electricity.

Tibet, as watershed and powershed, reorients the entire plateau, no longer complete unto itself, self-sufficient and sustainable, as it was for thousands of years. Tibet is now defined from a lowland Chinese viewpoint, as a huge area for which a use has at last been found, as source of water and electricity, transfusing the blood vessels of power-hungry lowland China with fresh energy.

[1] Tibet starts constructing the first over-million-kilowatt hydropower station, Kangba TV, 29 April 2016, http://en.kangbatv.com/news/201604/t20160429_2768541.shtml#sthash.XnY5bySt.dpuf

[2] http://en.kangbatv.com/news/201604/t20160429_2768541.shtml#sthash.XnY5bySt.dpuf

[3] Pengfei Wang, Jian Chen , Fuchu Dai et al., Chronology of relict lake deposits around the Suwalong paleolandslide in the upper Jinsha River, SE Tibetan Plateau: Implications to Holocene tectonic perturbations, Geomorphology 217 (2014) 193–203

[4] Bo Li, Songqiao Yao, Yin Yu and Qiaoyu Guo, The “Last Report” On China’s Rivers, Appendix 9.3 p12 https://www.internationalrivers.org/china%E2%80%99s-last-rivers-report

[5] https://library.e.abb.com/public/57af6cb9ca0204ffc1257dcf004d7495/POW0056%20Rev%202.pdf

[6] http://www.energy.siemens.com/co/en/power-transmission/hvdc/hvdc-ultra/#content=Description%20

[7] https://en.wikipedia.org/wiki/Xiangjiaba_Dam

[8] https://en.wikipedia.org/wiki/Xiluodu_Dam

[9] Fan Xiao, Jinping-I Dam impoundment linked to earthquakes, Probe International, 3 Feb 2014,            https://journal.probeinternational.org/2014/02/03/jinping-i-dam-impoundment-linked-to-earthquakes/

[10] Jing Chen, Brian L. Finlayson, Taoyuan Wei, Qianli Sun, Michael Webber, Maotian Li, Zhongyuan Chen;  Changes in monthly flows in the Yangtze River, China – With special reference to the Three Gorges Dam,  Journal of Hydrology 536 (2016) 293–301

[11] Liu, Zhenya. Zhongguo dianli yu nengyuan)  China Electric Power Press, 2012 in Chinese; Translated as: Electric Power and Energy in China, John Wiley, 2013, 139

[12] http://www.chinavitae.com/biography/Liu_Zhenya/bio

[13] China Alleges $1 Billion in Misappropriated Spending, Wall Street Journal, June 16, 2014    http://qz.com/222197/1-billion-went-missing-while-china-was-building-this-electricity-grid/

[14] Global Energy Interconnection: Vision of A World Power Grid, Platts Commodity News, 21 March 2016

[15] Liu, Electric Power, 165-6

[16] Liu, Electric Power, 163

[17] Beth Walker and Liu Qin, China’s shift from coal to hydro comes at a heavy price, China Dialogue, 27 July 2015

[18] China’s State Grid Envisions Global Wind, Solar Network, Wall Street Journal, March 30, 2016

[19] http://www.geidca.com/html/qqnyen/col2015100618/2015-11/06/20151106180517031181362_1.html

[20] Eric Ng , World power: Why China’s State Grid is charged up over global interconnection dream, South China Morning Post, 21 January 2016

[21] Global Energy Interconnection: Vision of A World Power Grid, Platts Commodity News, 21 March 2016

[22] LI Min-na 李敏纳; CAI Shu   蔡舒; QIN Cheng-lin  覃成林;A Study on the Comparison of the Western Land Resource Development between the United States and China,    West Forum  西部论坛, Chongqing Technology and Business University  重庆工商大学 2015

[23] WANG Xiuhong, SHEN Yuancun, CONG Richun and LU Qi,  Conflicts Affecting Sustainable Development in West China since the Start of China’s Western Development Policy, Sept., 2012 Journal of Resources and Ecology Vol.3 No.3, 202-208

[24] Paulo Freire, Pedagogy of the Oppressed.

[25] Huang Kaixi and Yu Ning, Debates on Ways to Reform Power Industry Heat Up, Caixin, 10 Nov 2014

http://english.caixin.com/2014-11-10/100749059.html

[26] http://fortune.com/global500/state-grid-7/

[27] Huang Kaixi and Yu Ning,  Debates on Ways to Reform Power Industry Heat Up, Caixin, 10 Nov 2014

http://english.caixin.com/2014-11-10/100749059.html

[28] Jianjian She, Chuntian Cheng,  Xiong Cheng, Jay R. Lund,  Coordinated operations of large-scale UHVDC hydropower and conventional hydro energies about regional power grid, Energy 95 (2016) 433-446

[29] Liu, Electric Power and Energy, 158

Posted in Tibet | Leave a comment

INTO THE LAND OF THE PARADOXICAL PARALLELS

IS UNESCO WORLD HERITAGE PROTECTING THE GYALMO NGUL CHU/NU/SALWEEN FROM DAMMING?

#7 in a series of 8 blogs on China’s latest plans for Tibetan rivers

 

After the Gyalmo Ngulchu/Nu/Salween escapes the massive  Songta dam and leaves Tibet Autonomous Region, it enters Gongshan county of Yunnan, formally assigned to the Dulong (or Drung) and Nu ethnicities. It also enters the UNESCO World Heritage Three Parallel Rivers protected area and high international visibility. In Tibet it remains a little-known river. Suddenly, in Yunnan, it becomes a major asset of global tourism.  It continues to run in a gorge, and, as the UNESCO appellation suggests, is close to both the Mekong/Lancang and to the Yangtze, three rivers in parallel.

 

In China’s rigid system of assigning fixed territories to fixed ethnic nationality identities, the Dulong and the Nu are among the smallest. Their home is Gongshan county which, in the 2000 Census, had a total population of 34,750, of whom only 3,100 were Han Chinese. The Tibetan population was 1455. There are only 7000 Thre Parallel Rivers topographic sat view UNESCODrung (or Dulong), whose lives are being rapidly changed by new hydropower dams.[1] The Nu are more numerous and less isolated from the tides of China’s history, with vivid memories of persecution during the Cultural Revolution.[2] But they are 27,000 people, confined to a modest area.

The parallel rivers are assigned to different ethnicities. Immediately to the east, in the steep valleys of the Dza Chu/Mekong and the Dri Chu/Yangtze, is the Tibetan Autonomous Prefecture of Diqing/Dechen, with 120,000 Tibetans, and 230,000 of many other nationalities, according to the 2000 Census. This is now the mecca of authenticity eco-tourism, officially rebranded as “Shangri-La.”[3]

Despite their physical proximity, the Three Parallel Rivers are sundered by ascription to different nationalities, and by their paradoxical mapping as properties of the UNESCO World Heritage list.

UNESCO has not understood its own strengths, as franchisor of the World Heritage brand, to insist that protection means protection, and Three Parallel Rivers cannot be both a global tourist attraction and be the location for the 13 hydropower dams in China’s plans. Three Parallel Rivers is a fairly new World Heritage site. UNESCO should by 2003 have learned the lesson that its imprimatur is commercially valuable, nowhere more so than in a China that craves global approval, and is keen to monetise it. The irretrievable result of the mistake of 2003 is a huge World Heritage area, of 900,000 hectares, yet broken into 15 separate parcels of land, with the actual rivers that give the whole property its name entirely excluded.

 

mapping yarlung dam sites by output 2010

What China officially proposed in 2003, and UNESCO accepted, was that the ridges and valley slopes separating these great rivers be inscribed, but the rivers themselves are excluded. The result is a patchwork park, ideally territorialised to fulfil China’s primary aim, of boosting tourism numbers. It fails on any other criterion for creating a coherent, protected landscape able to conserve biodiversity or indigenous cultures.

It is the rivers incising a rising plateau that made this landscape, yet they are not part of the UNESCO World Heritage Three Parallel Rivers, leaving China free to persist with damming them, and now to cross the protected and unprotected areas alike, with the marching power pylons of the west-to-east W2E UHV ultra high voltage cables sending hydro-electricity, in a straight line that utterly disregards topography, from Yunnan all the way to Guangzhou on China’s east coast. (see previous blogs in this series)

FRAGMENTING A COHERENT COMMUNITY-CONSERVED AREA INTO INCOHERENT, INCONSISTENT, MODERNIST PARCLES

UNESCO is caught in a mess of its own making, having failed from the outset to recognise its unique power to brand remote landscapes as an asset class of global attractiveness. UNESCO failed to leverage its brand, badly sought by China’s mass tourism planners, failing to insist that the price of conferring its brand and World Heritage designation, was the inclusion of a whole landscape.

Today, World Heritage can only complain, in vain, that this property of scattered  jigsaw pieces: “raises questions of coherence and connectivity among and between the distinct components.” [4] Every few years UNESCO and IUCN send monitoring missions to the Three Parallel Rivers, which invariably report their increasing distress at: “Apparent decline in wildlife populations; Dams and related infrastructure; Lack of clarity of property boundaries; Mining; Inadequate management planning, including tourism planning.”

In due course, sometimes years later, UNESCO receives a reply from Chinese officials (the State Party in UN jargon), which offers vague assurances that illegal mining has been stopped (and where it has not been stopped, will most definitely be stopped) with flat refusal to encroach on the prerogative of the mighty State Grid Corporation to position its power pylons right across the Three Parallel Rivers protected area. The World Heritage missions of 2006 and 2013 asked for a Strategic Environmental Assessment (SEA) of the UHV power line plan to string cabling in the opposite direction to the lie of the land, over the Three Parallel Rivers. In 2015, Chinese officials, afraid to challenge State Grid Corporation, gave as their only official response, that an SEA would be “too complex” and will not be done. Instead a Yunnan-based scientific research institute will do an SEA of the entire province, which will adhere to the official line that Yunnan stands to benefit greatly from exporting its hydropower to rich coastal provinces.[5]

Inevitably, World Heritage is reduced to glumly acknowledging how casually China brushes aside its complaint: “The notion of direct impacts of any of the 13 proposed dams in the vicinity of the property is rejected on the grounds of their location outside of the property and its buffer zones.”[6]  To that UNESCO has no answer: it is powerless.

To China’s planners, the confluence of mass tourism, hydro dams, ultra-high voltage power lines and World Heritage listing are a win/win combination, each contributing to modernity, and the realisation of the “China Dream.” Clearly, World Heritage, led by scientific field reports, sees a clash, which is not resolved by artificially separating dammable riverbeds from their World Heritage valleys. To China, it is all development, which means the arrival in remote areas of wealth accumulation opportunities. What mass tourism, dam building and electricity export all share is the chance to get rich.

Anthropologists remind us that China teaches its citizens how, through tourism, to become consuming individuals with personalised tastes and desires: “In China, the Pocket Encyclopedia of Tourism made it clear that tourism was part of a consumption lifestyle that the country had to learn if it was to catch up with Western modernity: ‘In . . . Western countries, people have become used to hopping on airplanes on weekends or traveling in individual cars. This shows that . . . tourism is closely linked to the results of modern social development’. “Scenic spot” (jingqu or jingdian) is a generic category that encompasses nature reserves as well as small towns, segments of the Great Wall, and revolutionary sites and is central to the discussion of tourism development in China. Scenic spots tend to be gated and standardized, with visitors’ centres and shopping streets like Jiuzhaigou. Large-scale tourism is seen as a low-cost strategy for developing poor regions and ‘civilizing’ their inhabitants, many of them ethnic minorities. In particular, tourism development is a core component of the ‘Great Western Development’ strategy announced in 1999. More recently, the government has established ‘experimental zones for poverty alleviation through tourism’ (lu¨you fupin shiyanqu).”[7]

The reality is that, from the outset, Three Parallel Rivers was a project of the Yunnan provincial Construction Department, to whom construction, be it of mass tourism facilities, dams or ultra-high voltage power pylons are, indeed, construction.  “The Yunnan Province Construction Department was responsible for the development of a ‘Master Plan for 2001–20’ for the Three Parallel Rivers National Park, which encompasses the World Heritage Area. The project has been coordinated since 1995 by the Three Parallel Rivers Scenic Zone Management Office, under the direction of the Chinese Ministry of Construction.[8]

 

CAN THE DRUNG, NU AND TIBETAN PEOPLES SPEAK UP FOR THEIR LANDS AND RIVERS?

Initially, the indigenous poor within the World Heritage area were meant to be involved: “The plan is to preserve the ethnic cultures, focusing on certain villages, retaining their biological, cultural and landscape diversity while developing their economic potential in environmentally friendly ways.”[9]

UNESCO compounds its inability to protect what it nominally protects by failing to work closely with the minority nationalities, the Nu, Dulong/ Drung and Tibetans whose homes constitute the Three Parallel Rivers. Ethnic minorities took active part in the conservation campaign of 2003, the very time UNESCO inscribed this property as World Heritage, to halt China’s plans to dam the Nu River. Despite the widespread view in Beijing that these minority ethnicities are backward and uncivilised, they successfully mobilised, attracting mass support locally, and the forging of alliances with scientists and leading public intellectuals from Beijing with the ability to persuade China’s leaders to back away from hydro-damming. This successful social movement held the dammers off for a decade, but now, to the consternation of both UNESCO and the Nu, Drung and Tibetans, the dam builders and electricity grid builders are back, in force, with an authoritarian party-state backing them.

 

HYDRO EQUALS MODERNITY EQUALS POVERTY ALLEVIATION

In all remote areas, China invariably argues that big nation-building projects are for the benefit of the local indigenous poor.  Park management now advances the familiar argument that hydro-damming Three Parallel Rivers is for the poor:  “The region where the Three Parallel Rivers World Heritage Site spans is a poverty-stricken area, where several hundreds of thousands of people are still living under the poverty line. Science-based and rational resources use outside the scope of the property are important means not only for the poverty alleviation and socio-economic development of the indigenous people living in the region, but also for the ecological and environmental protection in the watersheds. In the process of economic development, Chinese government at all levels, as committed, will surely develop comprehensive plans, conduct scientific research and appraisal to implement heritage conservation and management pertaining to relevant laws and regulations, and harmonize the coexistence and relationship between development and the nature.”[10]

UNESCO is helpless to respond, having itself done nothing to maintain connections with the poor, or to provide them a channel to articulate their concerns, speak for themselves and assert a speaking position.

As a result, despite tourism industry rhetoric about minority nationalities living in harmony with nature, many inhabitants have been removed. “The World Heritage Committee fails to mention another topic that should have been of concern: the relocation of villagers from the ‘property’. As of 2003, the provincial authorities had reportedly completed the relocation of approximately 36,000 people (9,000 households) from the ‘protection area’, mainly to resettle in Dali and Simao prefectures. A further 19,500 people were scheduled for resettlement over the next few years, 60 percent of them from core zones of the area and the remainder from buffer zones.  No information was available on how these people would be compensated or whether they would be offered support for livelihood restoration.”[11]

A more up to date account of how many people have been displaced by dams on the Mekong in Yunnan is also available: Dam-Induced Displacement and Agricultural Livelihoods in China’s Mekong Basin, Brendan A. Galipeau & Mark Ingman & Bryan Tilt, Human Ecology, (2013) 41:437–446

DRAWING BOUNDARIES

Planning the hydro dams has taken decades, and the definitive plan for the 13 dams in the parallel rivers was also finalised in 2003, the same year UNESCO branded the area. UNESCO is again helpless when China says the dams are none of UNESCO’s business. Park management now says: “The Report on Hydropower Development Planning on the Segments of the Middle Reaches of Jinsha [Yangtze] River was approved at the national level in January 2003. A hydropower development plan of ‘one headwater reservoir with eight cascade power plants’, respectively at Longpan, Liangjiaren, Liyuan, Ahai, Jin’anqiao, Longkaikou, Ludila and Guanyingyan was proposed.  None of the above planned hydropower plants are located within the scope of the property.” [12]Everything is going according to plan, everything is legal and legitimate, World Heritage and hydropower can learn to live with each other. Knowing not only where the dams would interrupt each of the great rivers, but also how high the dam walls would be, China took care to draw the UNESCO property boundaries to fully exclude not only riverbeds but the full height of the dams when filled with impounded water.

The same decisive year, 2003, also saw finalisation of long terms plans for the hydro damming of the Dza Chu/Lancang/Mekong in the parallel river area; and again, park management denies that UNESCO has any authority: “Formulation of the Report on Hydropower Development Planning on the Section from Gushui to Miaowei of the Lancang River was completed toward the end of 2003. The report proposed a hydropower development plan of ‘one headwater reservoir with seven cascade hydropower projects’, respectively, at Gushui, Wunonglong, Lidi, Tuoba, Huangdeng, Dahuaqiao and Miaowei on the upper reaches of Lancang[Mekong]  River. Of these hydropower plants, Gushui, Wunonglong, Lidi, Tuoba, Huangdeng and Dahuaqiao are in the vicinity of the property.  None of the above proposed hydropower plants are located within the scope of the property and its buffer areas.”

In addition to these dams, four more are planned for the section of the Nu/Gyalmo Ngulchu/Salween that flows through the Three Parallel Rivers: known as the Maji , Yabiluo, Liuku and  Saige dams.

dam cascade to 2050 graphic

A BIG NEW RESERVOIR ATOP EACH DAM CASCADE ON ALL THREE PARALLEL RIVERS

On all three rivers, the plan is for a “headwater reservoir” above the main hydro dams, to accumulate water and store it, to provide more flow and thus more predictable hydropower generation, beyond the summer monsoon season. This inevitably means interfering with natural environmental flows and disrupting the life cycles of many species, especially fish which migrate upriver to breed. UNESCO is painfully aware of what is now at stake: “The site contains more than 200 species of rhododendrons, over 100 species each for gentians and primulas, and many species of lily and orchid, as well as many of the most noted Chinese endemic ornamental plants: gingko, the dove tree, four species of the blue poppy and two species of Cycas. The diversity of conifers is outstanding; in addition to dozens of the main mountain forest trees (Abies, Picea, Pinus, Cupressus and Larix), there are many endemic or rare conifers. There are also around 20 rare and endangered plants which are relict species and survived the Pleistocene glaciations, including the Yunnan yew. The area is the most outstanding region for animal diversity in China, and likely in the Northern Hemisphere. Two-thirds of the fauna within the nominated site are either endemic, or are of Himalayan-Hengduan Mountain types. The area is believed to support over 25% of China’s animal species, many being relict and endangered. Many of China’s rare and endangered animals are within the nominated area: 80 are listed in the Red Book of Chinese animals, 20 of which are considered endangered.”[13]

The enormous weight of headwater reservoirs can be sufficient to trigger earthquakes and landslides, both because impounded water is heavy and because water seeps down to fault lines and lubricates their straining to suddenly move.[14]

State Council official map of western route water trnsfer

 

On the Gyalmo Ngulchu/Nu/Salween, China’s hydro engineers are tempted to supplement flow by transferring water from a different catchment basin, that of the Yarlung Tsangpo/Brahmaputra. Although the Yarlung Tsangpo, the major river of southern Tibet, takes a long course from its source in far western upper Tibet, draining as it goes the entire northern flank of the Himalayas before dramatically cutting right through the Himalayas to India and Bangladesh, the Yarlung Tsangpo also has tributaries well to the east, in fact the Parlung Tsangpo, at its subglacial source of Ra’o Tso lake is very close to a side stream that flows into the Gyalmo Ngulchu/Nu.

The uppermost Parlung Tsangpo at one point (~29°25’N, 96°45’E) is as little as 35 kms away from a tributary of the Nu, also in its upper reaches. Even though –inevitably- what separates these two watersheds is a mountain range that would have to be tunnelled, this closeness is a tempting target for engineers, and on the official wish lists of China’s planners.

Apart from the necessity of tunnelling, in a landscape so rugged and remote that few Tibetans have seen it, preferring to believe it is a hidden land of bliss, there are other problems. The People’s Daily E-government website acknowledges that at this closest point the Parlung Tsangpo is below the Nu River tributary in altitude, which would necessitate pumping. To make things harder still, the two rivers flow in opposite directions: the Parlung Tsangpo heads towards the northwest, the Nu to the SSE, so other sites to connect them have even great disparities in elevation. But, the People’s Daily E-government site announces cheerfully, the answer to gravity is pumping, and there are plenty of sites on the Nu River suited to hydropower stations to generate the electricity needed.[15]

Thus it is possible that the four hydro dams planned for the Nu River just after it leaves Tibet would be needed primarily for pumping water uphill, across watersheds and through mountains. That could result in an enhanced flow, spread across more months of the year, to keep more turbines lower on the Nu spinning, and sending their electricity to far Guangzhou.

It is the hydropower potential of the Nu (Gyalmo Ngulchu in Tibetan, Salween in Myanmar) that is the attraction. This is not the only place where China is  faced with the same problem of having to overcome the law of gravity. On the Dadu River, far above its confluence with the Yangtze, the reason for expensively pumping water uphill into the Yellow River/Ma Chu is the water itself, much needed by the depleted Yellow River. Here too, on the Nu,  the argument is somewhat circular: we can get more water into the Nu by pumping it from the Parlung Tsangpo, by using hydro-electricity, so that the increased flow will power more hydro-electricity in a cascade of dams wherever damming is possible. It is little wonder this scheme, while still on the books, is on the back burner.

Songta dam tsawarong TAR 2014

 

 

 

HOW TO FAIL TO CONSERVE WORLD HERITAGE

 

Of the 48 World Heritage sites officially listed as “in danger”, not one is in China.[16] UNESCO can argue that, as a UN agency, it is bound to work with the State Party, as its sole partner, and has no role working also with civil society, even though the consensus among biodiversity conservationists worldwide is that partnerships with local communities, who have conserved landscapes and biodiversity for centuries, is the most effective way of maintaining conservation.

But UNESCO works closely with IUCN, an organisation of biodiversity scientists which strongly promotes indigenous conservation, and, as an NGO, is able to do community work to strengthen alliances and co-management strategies that empower the disempowered to take a leading role. IUCN formally recognises, as a category, what it calls Indigenous and Community Conserved Areas (ICCAs) as having a much longer and more successful history than officially protected areas such as World Heritage. But on the ground, those connections have not been made. As a result, China is free to speak for the local communities, with no fear of contradiction, and to proclaim hydro damming as a poverty alleviation program for the benefit of these whose voices are utterly absent from the debate.

Salween dam plans IRN 2014

China’s official managers of the Three Parallel Rivers World Heritage explicitly argue for hydro damming: “Necessities for developing hydropower projects:   China remains to be a developing country and that the trend of economic growth and protection of the natural environment is an inexorable trend. The growing demand for power energy will accompany such economic growth. Enhancing the natural environmental protection necessitates developing production means for clean and renewable energy. All countries worldwide, with no exception, give priority to developing hydropower energy. Hydropower generation is still regarded as the cleanest, renewable and can be achieved in large scale. China is relatively rich in hydropower resources that are clean and renewable and are high quality resources for power generation.

“In one way, the China’s inscription of the Three Parallel Rivers as the world natural heritage was intended as means to enhancing its efforts on the protection of the natural resources and the environment; on the other, only when science-based extraction and utilization of the ‘hydropower of the three rivers’ is implemented to promote the sustainable socio-economic development of the Three Parallel Rivers Region, can the ideal win-win goals of natural resources protection and sustainable development can be attained. The Three Parallel Rivers Region of Yunnan Province is a poverty-stricken area, several hundreds and thousands of people are still living below the poverty line. Science-based extraction and utilization of the hydropower resources of the three great rivers is an inevitable choice not only for sustaining China’s economic growth, protection the natural resources and environment, but also for the socio-economic development, poverty reduction in these regions of Yunnan and environmental protection in the watersheds in Yunnan Province.

“In actual implementation of the hydropower projects, as the State Party, China will responsibly and adequately harmonize the relationship between the sustainable uses of the hydraulic resources and the co-existence of man and the nature.”[17]

This is an uncompromising legislative voice, speaking on behalf of both nature and the human population of the three rivers, with no fear of contradiction. The peoples of the Three Parallel Rivers are systemically disempowered, because from the outset UNESCO gave China the power to define on what grounds the area should be protected. UNESCO World Heritage is a broad, inclusive idea, encompassing culture and nature. UNESCO has 10 criteria enabling a nomination to proceed, the last four make no mention of the human presence in a landscape, and it is under those four criteria that China applied for the Three Parallel Rivers inscription, solely as  a landscape containing superlative natural phenomena, exceptional natural beauty and aesthetic importance; as outstanding examples representing major stages of earth’s history; and as outstanding examples representing significant on-going ecological and biological processes in the evolution and development of terrestrial, fresh water ecosystems and communities of plants and animals; plus containing the most important and significant natural habitats for in-situ conservation of biological diversity, including those containing threatened species of outstanding universal value from the point of view of science or conservation.

UNESCO

 

UNESCO’s formal distinction between cultural criteria and natural criteria has allowed China to formally exclude the human population from any mention in the actual criteria for inscription, even though UNESCO does talk of “cultural landscapes.” Having excluded the people from any value in why the Three Parallel Rivers constitute World Heritage, China is now free to bring in the human population, as objects of the developmentalist party-state, to justify hydro damming and ultra-high voltage electricity export. To this UNESCO has nothing it can say.

UNESCO finds itself struggling to protect the landscapes, human lives and biodiversity that World Heritage inscription is meant to protect.  In reality what World Heritage offers is a form of capital that is appropriated by a developmentalist party-state as world stamp of approval for a mass tourism destination. The anthropologists note that this does go back to the inscription process of 2003: “The social engineering function of tourism [in China]—its mission to ‘shed the light of modern civilization on every rural corner’  -remains strong, tied as it is to the state’s drive to improve the “quality” (suzhi) of the population by creating modern consumer-citizens. If the promotion of consumption is explicitly linked to the valorization of ‘openness’ and globality, then it is hardly surprising that World Heritage has been central to the promotion strategy pursued by China’s tourism authorities. Christine Tam, Director of Conservation Area Planning for the Nature Conservancy’s China Programme, which helped prepare the nomination of the Three Parallel Rivers in Yunnan Province in 2003, disappointedly comments that World Heritage ‘feels like a tourism designation, not a designation to protect resources’”.[18]

When Tibetans and other minority nationalities joined with Beijing scientists and public intellectuals, in 2003, to successfully oppose the hydro damming of the Gyalmo Ngulchu/Nu local Tibetan communities defending their homelands were indeed poor, yet they spoke out. In 2016, the Tibetans are better off, better educated, with a wider range of income sources, and thus better able to speak for themselves.

Many Tibetans have become entrepreneurs of the tourism boom, appealing both to mass domestic Han Chinese tourists and international visitors seeking the authentic Shangri-La. The high pastures above the rivers are rich in Yartsa gumbu (ophiocordyceps sinensis) a caterpillar fungus prized in China as a powerful restorative medicine, and Tibetans have made fortunes. China has also encouraged the growing of red wine grapes in the cool climate of these Tibetan uplands, again providing income, training and education for Tibetans, who can see how to maintain both modernity and tradition, if allowed.[19] If UNESCO chose to work with this new generation of educated and articulate Tibetans, much could be achieved, that would actively conserve World Heritage values.

 

This blog is a long form version of a paper to be presented to the World Heritage Watch conference, 8 July 2016: http://www.world-heritage-watch.org/index.php/en/

 

[1] Edward Wong, Chinese Modernization Comes to an Isolated People, NY Times, April 24, 2016

[2] Mireille Mazard, Powerful Speech: Remembering the Long Cultural Revolution in Yunnan, Inner Asia 13 (2011): 161–82

[3] Ashild Kolas, Tourism and Tibetan Culture in Transition, Routledge, 2008

[4] Item 7B of the Provisional Agenda: State of conservation of properties inscribed on the World Heritage List,  World Heritage 39 COM, WHC-15/39.COM/7B, Bonn, Germany 28 June – 8 July 2015

[5] http://whc.unesco.org/en/list/1083/documents.

[6] Three Parallel Rivers of Yunnan Protected Areas State of Conservation SOC report by UNESCO World Heritage 2015 http://whc.unesco.org/en/soc/3236

[7] Joana Breidenbach and Pa´l Nyı´ri,   “Our Common Heritage”: New Tourist Nations, Post-“Socialist” Pedagogy, and the Globalization of Nature, Current Anthropology Volume 48, Number 2, April 2007

[8] Ashild Kolas, Tourism and Tibetan Culture in Transition: A place called Shangrila, Routledge, 2008, 23

[9] www.unep-wcmc.org/sites/wh/Three_Parallel.html

[10] Management Committee of the Three Parallel Rivers Yunnan Protected Areas,  World Natural Heritage Site Report on the Status of Conservation for the Three Parallel Rivers Protected Areas of Yunnan, China, Jan., 2015 http://whc.unesco.org/en/list/1083/documents

[11] Ashild Kolas, Tourism and Tibetan Culture in Transition: A place called Shangrila, Routledge, 2008, 24

[12] http://whc.unesco.org/en/list/1083/documents

[13] World Heritage Nomination – IUCN Technical Evaluation, Three Parallel Rivers Of Yunnan Protected Areas, (China) Id Nº 1083

[14] http://www.src.com.au/earthquakes/seismology-101/dams-earthquakes/

https://www.internationalrivers.org/earthquakes-triggered-by-dams

[15]  http://ezheng.people.com.cn/proposalPostDetail.do?boardId=1&view=1&id=2118097

[16] http://whc.unesco.org/en/danger/

[17] The Management Committee of the Three Parallel Rivers Yunnan Protected Areas World Natural Heritage Site; Report on the Status of Conservation for the Three Parallel Rivers Protected Areas of Yunnan, China, 6-7 http://whc.unesco.org/document/135083

[18] Joana Breidenbach and Pa´l Nyı´ri,   “Our Common Heritage”

[19] Brendan A. Galipeau, Socio-Ecological Vulnerability in a Tibetan Village on the Mekong River, China; Himalaya, the Journal of the Association for Nepal and Himalayan Studies, 34 #2, 2014

also: http://ir.library.oregonstate.edu/xmlui/handle/1957/31328#?

 

Posted in Tibet | Leave a comment